39 research outputs found

    Diffusion Inertial Poser: Human Motion Reconstruction from Arbitrary Sparse IMU Configurations

    Full text link
    Motion capture from a limited number of inertial measurement units (IMUs) has important applications in health, human performance, and virtual reality. Real-world limitations and application-specific goals dictate different IMU configurations (i.e., number of IMUs and chosen attachment body segments), trading off accuracy and practicality. Although recent works were successful in accurately reconstructing whole-body motion from six IMUs, these systems only work with a specific IMU configuration. Here we propose a single diffusion generative model, Diffusion Inertial Poser (DiffIP), which reconstructs human motion in real-time from arbitrary IMU configurations. We show that DiffIP has the benefit of flexibility with respect to the IMU configuration while being as accurate as the state-of-the-art for the commonly used six IMU configuration. Our system enables selecting an optimal configuration for different applications without retraining the model. For example, when only four IMUs are available, DiffIP found that the configuration that minimizes errors in joint kinematics instruments the thighs and forearms. However, global translation reconstruction is better when instrumenting the feet instead of the thighs. Although our approach is agnostic to the underlying model, we built DiffIP based on physiologically realistic musculoskeletal models to enable use in biomedical research and health applications

    Algorithmic differentiation improves the computational efficiency of OpenSim-based trajectory optimization of human movement

    Get PDF
    Algorithmic differentiation (AD) is an alternative to finite differences (FD) for evaluating function derivatives. The primary aim of this study was to demonstrate the computational benefits of using AD instead of FD in OpenSim-based trajectory optimization of human movement. The secondary aim was to evaluate computational choices including different AD tools, different linear solvers, and the use of first- or second-order derivatives. First, we enabled the use of AD in OpenSim through a custom source code transformation tool and through the operator overloading tool ADOL-C. Second, we developed an interface between OpenSim and CasADi to solve trajectory optimization problems. Third, we evaluated computational choices through simulations of perturbed balance, two-dimensional predictive simulations of walking, and three-dimensional tracking simulations of walking. We performed all simulations using direct collocation and implicit differential equations. Using AD through our custom tool was between 1.8 ± 0.1 and 17.8 ± 4.9 times faster than using FD, and between 3.6 ± 0.3 and 12.3 ± 1.3 times faster than using AD through ADOL-C. The linear solver efficiency was problem-dependent and no solver was consistently more efficient. Using second-order derivatives was more efficient for balance simulations but less efficient for walking simulations. The walking simulations were physiologically realistic. These results highlight how the use of AD drastically decreases computational time of trajectory optimization problems as compared to more common FD. Overall, combining AD with direct collocation and implicit differential equations decreases the computational burden of trajectory optimization of human movement, which will facilitate their use for biomechanical applications requiring the use of detailed models of the musculoskeletal system.Postprint (published version

    Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies

    Get PDF
    Physics-based predictive simulations of human movement have the potential to support personalized medicine, but large computational costs and difficulties to model control strategies have limited their use. We have developed a computationally efficient optimal control framework to predict human gaits based on optimization of a performance criterion without relying on experimental data. The framework generates three-dimensional muscle-driven simulations in 36 min on average—more than 20 times faster than existing simulations—by using direct collocation, implicit differential equations and algorithmic differentiation. Using this framework, we identified a multi-objective performance criterion combining energy and effort considerations that produces physiologically realistic walking gaits. The same criterion also predicted the walk-to-run transition and clinical gait deficiencies caused by muscle weakness and prosthesis use, suggesting that diverse healthy and pathological gaits can emerge from the same control strategy. The ability to predict the mechanics and energetics of a broad range of gaits with complex three-dimensional musculoskeletal models will allow testing novel hypotheses about gait control and hasten the development of optimal treatments for neuro-musculoskeletal disorders.Postprint (published version

    Subject-exoskeleton contact model calibration leads to accurate interaction force predictions

    Get PDF
    Knowledge of human–exoskeleton interaction forces is crucial to assess user comfort and effectiveness of the interaction. The subject-exoskeleton collaborative movement and its interaction forces can be predicted in silico using computational modeling techniques. We developed an optimal control framework that consisted of three phases. First, the foot-ground (Phase A) and the subject-exoskeleton (Phase B) contact models were calibrated using three experimental sit-to-stand trials. Then, the collaborative movement and the subject-exoskeleton interaction forces, of six different sit-to-stand trials were predicted (Phase C). The results show that the contact models were able to reproduce experimental kinematics of calibration trials (mean root mean square differences - RMSD - coordinates = 1.1° and velocities = 6.8°/s), ground reaction forces (mean RMSD= 22.9 N), as well as the interaction forces at the pelvis, thigh, and shank (mean RMSD = 5.4 N). Phase C could predict the collaborative movements of prediction trials (mean RMSD coordinates = 3.5° and velocities = 15.0°/s), and their subject-exoskeleton interaction forces (mean RMSD = 13.1° N). In conclusion, this optimal control framework could be used while designing exoskeletons to have in silico knowledge of new optimal movements and their interaction forces.Postprint (author's final draft

    Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy : a retrospective case study

    Get PDF
    Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders

    Modeling toes contributes to realistic stance knee mechanics in three-dimensional predictive simulations of walking

    No full text
    Physics-based predictive simulations have been shown to capture many salient features of human walking. Yet they often fail to produce realistic stance knee and ankle mechanics. While the influence of the performance criterion on the predicted walking pattern has been previously studied, the influence of musculoskeletal mechanics has been less explored. Here, we investigated the influence of two mechanical assumptions on the predicted walking pattern: the complexity of the foot model and the stiffness of the Achilles tendon. We found, through three-dimensional muscle-driven predictive simulations of walking, that modeling the toes, and thus using two-segment instead of single-segment foot models, contributed to robustly eliciting physiological stance knee flexion angles, knee extension torques, and knee extensor activity. Modeling toes also slightly decreased the first vertical ground reaction force peak, increasing its agreement with experimental data, and improved stance ankle kinetics. It nevertheless slightly worsened predictions of ankle kinematics. Decreasing Achilles tendon stiffness improved the realism of ankle kinematics, but there remain large discrepancies with experimental data. Overall, this simulation study shows that not only the performance criterion but also mechanical assumptions affect predictive simulations of walking. Improving the realism of predictive simulations is required for their application in clinical contexts. Here, we suggest that using more complex foot models might contribute to such realism

    In Silico-Enhanced Treatment and Rehabilitation Planning for Patients with Musculoskeletal Disorders: Can Musculoskeletal Modelling and Dynamic Simulations Really Impact Current Clinical Practice?

    No full text
    Over the past decades, the use of computational physics-based models representative of the musculoskeletal (MSK) system has become increasingly popular in many fields of clinically driven research, locomotor rehabilitation in particular. These models have been applied to various functional impairments given their ability to estimate parameters which cannot be readily measured in vivo but are of interest to clinicians. The use of MSK modelling and simulations allows analysis of relevant MSK biomarkers such as muscle and joint contact loading at a number of different stages in the clinical treatment pathway in order to benefit patient functional outcome. Applications of these methods include optimisation of rehabilitation programs, patient stratification, disease characterisation, surgical pre-planning, and assistive device and exoskeleton design and optimisation. This review provides an overview of current approaches, the components of standard MSK models, applications, limitations, and assumptions of these modelling and simulation methods, and finally proposes a future direction
    corecore