38 research outputs found

    The Methylome of the Marbled Crayfish Procambarus virginalis

    Get PDF
    DNA methylation in invertebrates seems to play a different role as in mammals and its evolutionary conservation among invertebrates is unclear. Only two studies describe crustacean methylomes giving just a small overview. The parthenogenetic reproducing marbled crayfish display a high environmental adaptability besides its genetic uniformity and thus, possess the necessary attributes of a laboratory model organism. The aim of this work was to characterize the methylome of the marbled crayfish at single-base resolution using whole-genome bisulfite sequencing in an attempt to give new insights into DNA methylation in crustaceans and thus, in the evolutionary conservation among invertebrates. Analysis of the mitochondrial DNA of different marbled crayfish strains revealed a single origin and suggests to consider the marbled crayfish as independent asexual species Procambarus virginalis. Furthermore, since the P. virginalis possess a large genome size, the transcriptome was assembled and comparison to other species revealed a relative good quality of the first draft transcriptome as well as the presence of a conserved DNA methylation system in P. virginalis. Analysis of the CpG depletion in protein-coding sequences and mass spectrometry confirmed historical germline and current DNA methylation in various tissues of P. virginalis. The methylome was characterized by the key features of animal methylomes with methylation targeted to gene bodies. The gene bodies displayed the typical pattern of a mosaically methylated invertebrate genome and a bimodal distribution of their methylation levels. Targeted gene bodies were annotated as housekeeping genes and methylation showed a parabolic relationship to housekeeping gene expression suggesting that the DNA methylation of housekeeping genes might fine-tune their expression. Additionally, repeats were generally hypomethylated and the methylation of repeats depended on their position to gene bodies. Finally, inter-individual and inter-tissue comparison of gene body methylation revealed a high reproducibility of the methylation patterns, while inter-species comparison between P. fallax and P. virginalis displayed an overall hypomethylation in the P. virginalis genes which however, could not explain the by mass spectrometry detected global hypomethylation in P. virginalis. These findings uncovered that the P. virginalis methylome is characterized by tissue-invariant housekeeping gene methylation. This thesis describes novel insights into the evolutionary conservation of gene body and repeat methylation in invertebrates, especially crustaceans, and the preferential methylation of housekeeping genes highlights a functional difference to the tissue-specific methylation in mammals

    The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes

    Get PDF
    Background: The parthenogenetic marbled crayfish (Procambarus virginalis) is a novel species that has rapidly invaded and colonized various different habitats. Adaptation to different environments appears to be independent of the selection of genetic variants, but epigenetic programming of the marbled crayfish genome remains to be understood. Results: Here, we provide a comprehensive analysis of DNA methylation in marbled crayfish. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue invariant, suggesting a function that is unrelated to cell fate specification. Indeed, integrative analysis of DNA methylation, chromatin accessibility and mRNA expression patterns revealed that gene body methylation correlated with limited chromatin accessibility and stable gene expression, while low-methylated genes often resided in chromatin with higher accessibility and showed increased expression variation. Interestingly, marbled crayfish also showed reduced gene body methylation and higher gene expression variability when compared with their noninvasive mother species, Procambarus fallax. Conclusions: Our results provide novel insights into invertebrate gene body methylation and its potential role in adaptive gene regulation

    The Genome and Methylome of a Beetle with Complex Social Behavior,Nicrophorus vespilloides(Coleoptera: Silphidae)

    Get PDF
    Testing for conserved and novelmechanisms underlying phenotypic evolution requires a diversity of genomes available for comparisonspanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily witheusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from awider range of taxa that also vary in their levels of sociality. Here,we present the assembled and annotated genome of the subsocialbeetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used thisgenome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene modelsmore strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insectgroups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, doesN. vespilloides have DNA methylation?We found strong evidence for an active DNA methylation system. The distribution of methylationwassimilar to other insects with exons having themostmethylatedCpGs. Methylation status appears highly conserved; 85%of themethylated genes in N. vespilloides are alsomethylated in the hymentopteran Nasonia vitripennis. The addition of this genomeadds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questionsabout the potential role of methylation in social behavior

    Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin

    Get PDF
    Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin

    The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

    Get PDF
    BBSRC Grant (BB/K005448/1)Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail?s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail?s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species? genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategiespublishersversionPeer reviewe

    Characterization of genome methylation patterns in the desert locust Schistocerca gregaria

    No full text
    DNA methylation is a widely conserved epigenetic modification. The analysis of genome-scale DNA methylation patterns in various organisms suggests that major features of animal methylomes are widely conserved. However, based on the variation of DNA methyltransferase genes in invertebrates, it has also been proposed that DNA methylation could provide a molecular mechanism for ecological adaptation. We have now analyzed the methylome of the desert locust, Schistocerca gregaria, which represents an organism with a high degree of phenotypic plasticity. Using genome-scale bisulfite sequencing, we show here that the S. gregaria methylome is characterized by CpG- and exon-specific methylation and thus shares two major features with other animal methylomes. In contrast to other invertebrates, however, overall methylation levels were substantially higher and a significant fraction of transposons was methylated. Additionally, genic sequences were densely methylated in a pronounced bimodal pattern, suggesting a role for DNA methylation in the regulation of locust gene expression. Our results thus uncover a unique pattern of genome methylation in locusts and provide an important foundation for investigating the role of DNA methylation in locust phase polyphenism

    The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals

    No full text
    The parthenogenetic all-female marbled crayfish is a novel research model and potent invader of freshwater ecosystems. It is a triploid descendant of the sexually reproducing slough crayfish, Procambarus fallax, but its taxonomic status has remained unsettled. By cross-breeding experiments and parentage analysis we show here that marbled crayfish and P. fallax are reproductively separated. Both crayfish copulate readily, suggesting that the reproductive barrier is set at the cytogenetic rather than the behavioural level. Analysis of complete mitochondrial genomes of marbled crayfish from laboratory lineages and wild populations demonstrates genetic identity and indicates a single origin. Flow cytometric comparison of DNA contents of haemocytes and analysis of nuclear microsatellite loci confirm triploidy and suggest autopolyploidisation as its cause. Global DNA methylation is significantly reduced in marbled crayfish implying the involvement of molecular epigenetic mechanisms in its origination. Morphologically, both crayfish are very similar but growth and fecundity are considerably larger in marbled crayfish, making it a different animal with superior fitness. These data and the high probability of a divergent future evolution of the marbled crayfish and P. fallax clusters suggest that marbled crayfish should be considered as an independent asexual species. Our findings also establish the P. fallax–marbled crayfish pair as a novel paradigm for rare chromosomal speciation by autopolyploidy and parthenogenesis in animals and for saltational evolution in general

    DataSheet3_Development of an epigenetic clock to predict visual age progression of human skin.pdf

    No full text
    Aging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.</p
    corecore