131 research outputs found

    Effect of ibuprofen on extracellular polymeric substances (EPS) production and composition, and assessment of microbial structure by quantitative image analysis

    Get PDF
    A Sequencing Batch Reactor (SBR) with activated sludge was operated with synthetic wastewater containing ibuprofen (IBU) to investigate the biomass stress-responses under long-term IBU exposure. There were 3 different phases: phase I as the control without IBU for 56 days, phase II (40 days), and phase III (60 days) containing IBU at 10 and 5 mg L?1 each. The overall performance of the SBR as well as the extracellular polymeric substances (EPS) in terms of polysaccharides, proteins, and humic acid substances were estimated. Morphological parameters of microbial aggregates in the presence of IBU (phase II and phase III) were assessed by quantitative image analysis (QIA). Removal efficiencies of chemical oxygen demand (COD) and ammonium (NH4+) were significantly reduced by IBU. Loosely bound EPS (LB-EPS) decreased during phase II and phase III, and tightly bound EPS (TB-EPS) was slightly higher in phase II than phase I. TB-EPS proteins were greater in phase II, perhaps to protect microbial cells from IBU exposure. These findings provided insight into both activated sludge stress-responses and EPS composition under long-term IBU exposure. Spearman correlation showed that EPS and morphological parameters significantly affected sludge settleability and flocculation. QIA also proved to be a powerful technique in investigating dysfunctions in activated sludge under IBU exposure.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/ 04469/2020 unit. The authors also acknowledge the financial support to Antonio ® Melo through the grant number 240–20170220 provided by Instituto Federal de Educaçao, ˜ Ciˆencia e Tecnologia de Pernambuco (IFPE). Daniela P. Mesquita and Cristina Quintelas thank FCT for funding through program DL 57/2016 – Norma transitoria. ® The final proofreading of this manuscript was carried out by BioMedES UK. (ww. biomedes.biz).info:eu-repo/semantics/publishedVersio

    Ecotoxicity of carbamazepine and its UV photolysis transformation products

    Get PDF
    Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during UV photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L-1 carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound. In fact, ecotoxicity was still greater than 60 % for all three endpoints even when the carbamazepine concentration had decreased to < 1 % of the starting concentration, and acridine and acridone had decreased to < 10 % of their maximum measured concentrations. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself are likely to be produced during UV treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds

    Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac

    Get PDF
    The presence of diclofenac in the aquatic environment and the risks for aquatic wildlife, especially fish, have been raised in several studies. One way to manage risks without enforcing improved wastewater treatment would be to substitute diclofenac (when suitable from a clinical perspective) with another non-steroidal anti-inflammatory drug (NSAID) associated with less environmental risk. While there are many ecotoxicity-studies of different NSAIDs, they vary extensively in set-up, species studied, endpoints and reporting format, making direct comparisons difficult. We previously published a comprehensive study on the effects of diclofenac in the three-spined stickleback (Gasterosteus aculeatus). Our present aim was to generate relevant effect data for another NSAID (naproxen) using a very similar setup, which also allowed direct comparisons with diclofenac regarding hazards and risks. Sticklebacks were therefore exposed to naproxen in flow-through systems for 27 days. Triplicate aquaria with 20 fish per aquarium were used for each concentration (0, 18, 70, 299 or 1232 mu g/L). We investigated bioconcentration, hepatic gene expression, jaw lesions, kidney and liver histology. On day 21, mortalities in the highest exposure concentration group unexpectedly reached >= 25 % in all three replicate aquaria, leading us to terminate and sample that group the same day. On the last day (day 27), the mortality was also significantly increased in the second highest exposure concentration group. Increased renal hematopoietic hyperplasia was observed in fish exposed to 299 and 1232 mu g/L. This represents considerably higher concentrations than those expected in surface waters as a result of naproxen use. Such effects were observed already at 4.6 mu g/L in the experiment with diclofenac (lowest tested concentration). Similar to the responses to diclofenac, a concentration-dependent increase in both relative hepatic gene expression of c7 (complement component 7) and jaw lesions were observed, again at concentrations considerably higher than expected in surface waters. Naproxen bioconcentrated less than diclofenac, in line with the observed effect data. An analysis of recent sales data and reported concentrations in treated sewage effluent in Sweden suggest that despite higher dosages used for naproxen, a complete substitution would only be expected to double naproxen emissions. In summary, naproxen and diclofenac produce highly similar effects in fish but the environmental hazards and risks are clearly lower for naproxen. Hence, if there are concerns for environmental risks to fish with diclofenac, a substitution would be advisable when naproxen presents an adequate alternative from a clinical point-of-view

    Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern?

    Get PDF
    publisher: Elsevier articletitle: Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? journaltitle: Science of The Total Environment articlelink: http://dx.doi.org/10.1016/j.scitotenv.2017.09.101 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved
    • 

    corecore