9 research outputs found

    Fast slow folding of an outer membrane porin

    Get PDF
    In comparison to globular proteins, the spontaneous folding and insertion of β-barrel membrane proteins are surprisingly slow, typically occurring on the order of minutes. Using single-molecule Förster resonance energy transfer to report on the folding of fluorescently labeled outer membrane protein G we measured the real-time insertion of a β-barrel membrane protein from an unfolded state. Folding events were rare and fast (<20 ms), occurring immediately upon arrival at the membrane. This combination of infrequent, but rapid, folding resolves this apparent dichotomy between slow ensemble kinetics and the typical timescales of biomolecular folding

    Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms

    No full text
    The flexible loops decorating the entrance of OmpG nanopore move dynamically during ionic current recording. The gating caused by these flexible loops changes when a target protein is bound. The gating is characterized by parameters including frequency, duration, and open-pore current, and these features combine to reveal the identity of a specific analyte protein. Here, we show that OmpG nanopore equipped with a biotin ligand can distinguish glycosylated and deglycosylated isoforms of avidin by their differences in surface charge. Our studies demonstrate that the direct interaction between the nanopore and analyte surface, induced by the electrostatic attraction between the two molecules, is essential for protein isoform detection. Our technique is remarkably sensitive to the analyte surface, which may provide a useful tool for glycoprotein profiling

    Tuning the Selectivity and Sensitivity of an OmpG Nanopore Sensor by Adjusting Ligand Tether Length

    No full text
    We have previously shown that a biotin ligand tethered to the rim of an OmpG nanopore can be used to detect biotin-binding proteins. Here, we investigate the effect of the length of the polyethylene glycol tether on the nanopore’s sensitivity and selectivity. When the tether length was increased from 2 to 45 ethylene repeats, sensitivity decreased substantially for a neutral protein streptavidin and slightly for a positively charged protein (avidin). In addition, we found that two distinct avidin binding conformations were possible when using a long tether. These conformations were sensitive to the salt concentration and applied voltage. Finally, a longer tether resulted in reduced sensitivity due to slower association for a monoclonal antibiotin antibody. Our results highlight the importance of electrostatic, electroosmotic, and electrophoretic forces on nanopore binding kinetics and sensor readout

    Selective Detection of Protein Homologues in Serum Using an OmpG Nanopore

    No full text
    Outer membrane protein G is a monomeric β-barrel porin that has seven flexible loops on its extracellular side. Conformational changes of these labile loops induce gating spikes in current recordings that we exploited as the prime sensing element for protein detection. The gating characteristics, open probability, frequency, and current decrease, provide rich information for analyte identification. Here, we show that two antibiotin antibodies each induced a distinct gating pattern, which allowed them to be readily detected and simultaneously discriminated by a single OmpG nanopore in the presence of fetal bovine serum. Our results demonstrate the feasibility of directly profiling proteins in real-world samples with minimal or no sample pretreatment

    Mechanism of OmpG pH-Dependent Gating from Loop Ensemble and Single Channel Studies

    No full text
    Outer membrane protein G (OmpG) from <i>Escherichia coli</i> has exhibited pH-dependent gating that can be employed by bacteria to alter the permeability of their outer membranes in response to environmental changes. We developed a computational model, Protein Topology of Zoetic Loops (Pretzel), to investigate the roles of OmpG extracellular loops implicated in gating. The key interactions predicted by our model were verified by single-channel recording data. Our results indicate that the gating equilibrium is primarily controlled by an electrostatic interaction network formed between the gating loop and charged residues in the lumen. The results shed light on the mechanism of OmpG gating and will provide a fundamental basis for the engineering of OmpG as a nanopore sensor. Our computational Pretzel model could be applied to other outer membrane proteins that contain intricate dynamic loops that are functionally important
    corecore