7 research outputs found

    Thick Does the Trick: Genesis of Ferroelectricity in 2D GeTe-Rich (GeTe)m (Sb2 Te3 )n Lamellae

    Get PDF
    The possibility to engineer (GeTe)(m)(Sb2Te3)n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)(m)(Sb2Te3)n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m(Sb2Te3)(1) blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m(Sb2Te3)(1) lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures

    Co/Pd-based spin-valves with perpendicular magnetic anisotropy on flexible substrates: direct deposition vs transfer-and-bonding approaches

    Get PDF
    Flexible spintronics is an emerging field of research that has received increasing attention due to the additional functionalities that are allowed (lightweight, flexibility, shape-ability, wearability) with respect to conventional rigid systems. In this work, different strategies for the fabrication of flexible spintronic devices with perpendicular magnetic anisotropy are compared, i.e., transfer-and-bonding approaches exploiting wet and dry lift-off methods, and direct deposition on flexible substrates. To evaluate the potential of the proposed strategies, Co/Pdbased giant magneto-resistive spin-valves including a synthetic antiferromagnet reference electrode were investigated. Such stacks represent a demanding model system, owing to the large number of interfaces whose quality strongly affects the overall magnetic and electric performances. The advantages and drawbacks of the different strategies are discussed to provide crucial indications for the development of flexible spintronic devices of any complexity. Based on the results, the most suitable option for achieving high-quality heterostructures on large area surfaces via direct deposition is using polyethylene naphthalate (Teonex®) tapes, provided that the processing and operating temperatures are relatively low (<525 K). On the other hand, if the process requires higher temperatures, the dry lift-off method exploiting the low adhesion between an Au underlayer and the SiOx/ Si(100) substrate is the preferred alternative

    Thin-film heterostructures based on Co/Ni synthetic antiferromagnets on polymer tapes: toward sustainable flexible spintronics

    Get PDF
    Synthetic antiferromagnets with perpendicular magnetic anisotropy (PMA-SAFs) have gained growing attention for both conventional and next-generation spin-based technologies. While the progress of PMA-SAF spintronic devices on rigid substrates has been remarkable, only few examples of flexible thin-film heterostructures are reported in the literature, all containing platinum group metals (PGMs). Systems based on Co/Ni may offer additional advantages with respect to devices containing PGMs, i.e., low damping and high spin polarization. Moreover, limiting the use of PGMs may relieve the demand for critical raw materials and reduce the environmental impact of related technologies, thus contributing to the transition toward a more sustainable future. Here, we discuss for the first time the realization of Co/Ni-based PMA-SAFs on polymer tapes and exploit it to obtain flexible giant magneto-resistive spin valves (GMR-SVs) with perpendicular magnetic anisotropy. Several combinations of buffer and capping layers (i.e., Pt, Pd, and Cu/Ta) are also investigated. High-quality flexible SAFs with a fully compensated antiferromagnetic region and SVs with a sizable GMR ratio (up to 4.4%), in line with the values reported in the literature for similar systems on rigid substrates, were obtained in all cases. However, we demonstrate that PGMs allows achieving the best results when used as a buffer layer, while Cu is the best choice as a capping layer to optimize the properties of the stacks. We justify the role of buffer and capping layers in terms of different interdiffusion mechanisms occurring at the interface between the metallic layers. These results, along with the high robustness of the samples' properties against bending (up to 180°), indicate that complex and bendable Co/Ni-based heterostructures with reduced content of PGMs can be obtained on flexible tapes, allowing for the development of novel flexible and sustainable spintronic devices for applications in many fields including wearable electronics, soft robotics, and biomedicine

    Flexible Magnetoreceptors: Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces (Adv. Funct. Mater. 25/2021)

    No full text
    In article number 2101089, Gaspare Varvaro, Denys Makarov, and co-workers present skin-compliant touchless interactive devices based on spin-valves with out-of-plane sensitivity to magnetic fields and with tunable logic characteristics. This technology will pave the way towards magnetoreceptive human-machine interfaces or virtual- and augmented reality applications, which are intuitive to use, energy efficient, and insensitive to external magnetic disturbances

    Room-temperature ferroelectric switching of spin-to-charge conversion in GeTe

    Get PDF
    21 pages, 4 figuresInternational audienceSince its birth in the 1990s, semiconductor spintronics has suffered from poor compatibility with ferromagnets as sources of spin. While the broken inversion symmetry of some semiconductors may alternatively allow for spin-charge interconversion, its control by electric fields is volatile. Ferroelectric Rashba semiconductors stand as appealing materials unifying semiconductivity, large spin-orbit coupling, and non-volatility endowed by ferroelectricity. However, their potential for spintronics has been little explored. Here, we demonstrate the non-volatile, ferroelectric control of spin-to-charge conversion at room temperature in epitaxial GeTe films. We show that ferroelectric switching by electrical gating is possible in GeTe despite its high carrier density. We reveal a spin-to-charge conversion as effective as in Pt, but whose sign is controlled by the orientation of the ferroelectric polarization. The comparison between theoretical and experimental data suggests that spin Hall effect plays a major role for switchable conversion. These results open a route towards devices combining spin-based logic and memory integrated into a silicon-compatible material
    corecore