47 research outputs found
Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for 125 I prostate implants
Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based Dw,w-TG 43 , (2) Dw,w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) Dm,m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) Dw,m that unlike Dm,m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm-3 (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different 125 I source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the 125 I prostate MC absorbed dose calculation in post-implant CT-based phantoms
In vivo verification of treatment source dwell times in brachytherapy of postoperative endometrial carcinoma: a feasibility study
Background: In brachytherapy, there are still many manual procedures that can cause adverse events which can be detected with in vivo dosimetry systems. Plastic scintillator dosimeters (PSD) have interesting properties to achieve this objective such as real-time reading, linearity, repeatability, and small size to fit inside brachytherapy catheters. The purpose of this study was to evaluate the performance of a PSD in postoperative endometrial brachytherapy in terms of source dwell time accuracy. Methods: Measurements were carried out in a PMMA phantom to characterise the PSD. Patient measurements in 121 dwell positions were analysed to obtain the differences between planned and measured dwell times. Results: The repeatability test showed a relative standard deviation below 1% for the measured dwell times. The relative standard deviation of the PSD sensitivity with accumulated absorbed dose was lower than 1.2%. The equipment operated linearly in total counts with respect to absorbed dose and also in count rate versus absorbed dose rate. The mean (standard deviation) of the absolute differences between planned and measured dwell times in patient treatments was 0.0 (0.2) seconds. Conclusions: The PSD system is useful as a quality assurance tool for brachytherapy treatments
Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent 125-I prostate brachytherapy
Purpose: RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. Methods and Materials: To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Results: Dose-volume histogram-related parameters like prostate D90, rectum D2cc, or urethra D10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. Conclusions: The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen
A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy
In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities
AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy
The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine—Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified