9,038 research outputs found
Strong CP breaking and quark-antiquark repulsion in QCD, at finite theta
This work is devoted to the study of the CP-breaking dynamics in QCD, at
finite theta-angle. By working in the semi-classical limit, in which the
topology of the vacuum is clustered around instantons and anti-instantons, we
show that quantum fluctuations of the theta-vacuum generate an effective
flavor-dependent repulsion between matter and anti-matter, inside hadrons. As a
consequence, during the tunneling between the degenerate vacua, quarks and
anti-quarks in the neutron migrate in opposite directions, giving rise to an
oscillating electric dipole moment. We discuss a possible phenomenological
implication of this effect.Comment: Final version, accepted for publication on Phys. Rev. D (Rapid Comm.
Investigating Biological Matter with Theoretical Nuclear Physics Methods
The internal dynamics of strongly interacting systems and that of
biomolecules such as proteins display several important analogies, despite the
huge difference in their characteristic energy and length scales. For example,
in all such systems, collective excitations, cooperative transitions and phase
transitions emerge as the result of the interplay of strong correlations with
quantum or thermal fluctuations. In view of such an observation, some
theoretical methods initially developed in the context of theoretical nuclear
physics have been adapted to investigate the dynamics of biomolecules. In this
talk, we review some of our recent studies performed along this direction. In
particular, we discuss how the path integral formulation of the molecular
dynamics allows to overcome some of the long-standing problems and limitations
which emerge when simulating the protein folding dynamics at the atomistic
level of detail.Comment: Prepared for the proceedings of the "XII Meeting on the Problems of
Theoretical Nuclear Physics" (Cortona11
Quantum Interactions Between Non-Perturbative Vacuum Fields
We develop an approach to investigate the non-perturbative dynamics of
quantum field theories, in which specific vacuum field fluctuations are treated
as the low-energy dynamical degrees of freedom, while all other vacuum field
configurations are explicitly integrated out from the path integral. We show
how to compute the effective interaction between the vacuum field degrees of
freedom both perturbatively (using stochastic perturbation theory) and fully
non-perturbatively (using lattice field theory simulations). The present
approach holds to all orders in the couplings and does not rely on the
semi-classical approximation.Comment: 15 pages, 4 figure
Strong CP Violation in External Magnetic Fields
We study the response of the QCD vacuum to an external magnetic field, in the
presence of strong CP violation. Using chiral perturbation theory and large N_c
expansion, we show that the external field would polarize quantum fluctuations
and induce an electric dipole moment of the vacuum, along the direction of the
magnetic field. We estimate the magnitude of this effect in different physical
scenarios. In particular, we find that the polarization induced by the magnetic
field of a magnetar could accelerate electric charges up to energies of the
order \theta 10^3 TeV. We also suggest a connection with the possible existence
of "hot-spots" on the surface of neutron stars.Comment: 4 pages, 1 figure. Major revision. Phenomenological analysis extende
Instanton Contribution to the Pion Electro-Magnetic Formfactor at Q^2 > 1 GeV^2
We study the effects of instantons on the charged pion electro-magnetic
formfactor at intermediate momenta. In the Single Instanton Approximation
(SIA), we predict the pion formfactor in the kinematic region Q^2=2-15 GeV^2.
By developing the calculation in a mixed time-momentum representation, it is
possible to maximally reduce the model dependence and to calculate the
formfactor directly. We find the intriguing result that the SIA calculation
coincides with the vector dominance monopole form, up to surprisingly high
momentum transfer Q^2~10 GeV^2. This suggests that vector dominance for the
pion holds beyond low energy nuclear physics.Comment: 8 pages, 5 figures, minor revision
The Effect of Interactions on the Conductance of Graphene Nanoribbons
We study the effects of the interaction between electrons and holes on the
conductance G of quasi-one-dimensional graphene systems.
We first consider as a benchmark the limit in which all interactions are
negligible, recovering the predictions of the tight-binding approximation for
the spectrum of the system, and the well-known result G=4 e^2/h for the lowest
conductance quantum. Then we consider an exactly solvable field theoretical
model in which the electro-magnetic interactions are effectively local.
Finally, we use the effective field theory formalism to develop an exactly
solvable model in which we also include the effect of non-local interactions.
We find that such interactions turn the nominally metallic armchair graphene
nanoribbon into a semi-conductor, while the short-range interactions lead to a
correction to the G=4 e^2/h formula.Comment: 9 pages, 1 figur
Are There Diquarks in the Nucleon?
This work is devoted to the study of diquark correlations inside the nucleon.
We analyze some matrix elements which encode information about the
non-perturbative forces, in different color anti-triplet diquark channels. We
suggest a lattice calculation to check the quark-diquark picture and clarify
the role of instanton-mediated interactions. We study in detail the physical
properties of the 0+ diquark, using the Random Instanton Liquid Model. We find
that instanton forces are sufficiently strong to form a diquark bound-state,
with a mass of ~500 MeV, which is compatible with earlier estimates. We also
compute its electro-magnetic form factor and find that the diquark is a broad
object, with a size comparable with that of the proton.Comment: Final version, accepted for publication on Phys. Rev.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd
Quantum Charge Transport and Conformational Dynamics of Macromolecules
We study the dynamics of quantum excitations inside macromolecules which can
undergo conformational transitions. In the first part of the paper, we use the
path integral formalism to rigorously derive a set of coupled equations of
motion which simultaneously describe the molecular and quantum transport
dynamics, and obey the fluctuation/dissipation relationship. We also introduce
an algorithm which yields the most probable molecular and quantum transport
pathways in rare, thermally-activated reactions. In the second part of the
paper, we apply this formalism to simulate the propagation of a charge during
the collapse of a polymer from an initial stretched conformation to a final
globular state. We find that the charge dynamics is quenched when the chain
reaches a molten globule state. Using random matrix theory we show that this
transition is due to an increase of quantum localization driven by dynamical
disorder.Comment: 11 pages, 2 figure
- …
