5 research outputs found

    Investigating the Effect of Physiological Need States on Palatability and Motivation Using Microstructural Analysis of Licking

    Get PDF
    The study of consummatory responses during food intake represents a unique opportunity to investigate the physiological, psychological and neurobiological processes that control ingestive behavior. Recording the occurrence and temporal organization of individual licks across consumption, also called lickometry, yields a rich data set that can be analyzed to dissect consummatory responses into different licking patterns. These patterns, divided into trains of licks separated by pauses, have been used to deconstruct the many influences on consumption, such as palatability evaluation, incentive properties, and post-ingestive processes. In this review, we describe commonly used definitions of licking patterns and how various studies have defined and measured these. We then discuss how licking patterns can be used to investigate the impact of different physiological need states on processes governing ingestive behavior. We also present new data showing how licking patterns are changed in an animal model of protein appetite and how this may guide food choice in different protein-associated hedonic and homeostatic states. Thus, recording lick microstructure can be achieved relatively easily and represents a useful tool to provide insights, beyond the measurement of total intake, into the multiple factors influencing ingestive behavior

    Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence

    Full text link
    Adolescence is a critical period characterized by major neurobiological changes. Chronic stimulation of the reward system might constitute an important factor in vulnerability to pathological development. In spite of the dramatic increase in the consumption of sweet palatable foods during adolescence in our modern societies, the long-term consequences of such exposure on brain reward processing remain poorly understood. Here, we investigated in rats the long-lasting effects of sugar overconsumption during their adolescence on their adult reactivity to the hedonic properties of sweet rewards. Adolescent rats with continuous access to 5% sucrose solution (from postnatal day 30-46) showed escalating intake. At adulthood (post-natal day 70), using two-bottle free choice tests, sucrose-exposed rats showed lower intake than non-exposed rats suggesting decreased sensitivity to the rewarding properties of sucrose. In Experiment 1, we tested their hedonic-related orofacial reactions to intraoral infusion of tasty solutions. We showed that sucrose-exposed rats presented less hedonic reactions in response to sweet tastes leaving the reactivity to water or quinine unaltered. Hence, in Experiment 2, we observed that this hedonic deficit is associated with lower c-Fos expression levels in the nucleus accumbens, a brain region known to play a central role in hedonic processing. These findings demonstrate that a history of high sucrose intake during the critical period of adolescence induces long-lasting deficits in hedonic treatment that may contribute to reward-related disorders

    A Role for Medial Prefrontal Dopaminergic Innervation in Instrumental Conditioning

    No full text
    To investigate the involvement of dopaminergic projections to the prelimbic and infralimbic cortex in the control of goal-directed responses, a first experiment examined the effect of pretraining 6-OHDA lesions of these cortices. We used outcome devaluation and contingency degradation procedures to separately assess the representation of the outcome as a goal or the encoding of the contingency between the action and its outcome. All groups acquired the instrumental response at a normal rate, indicating that dopaminergic activity in the medial prefrontal cortex is not necessary for the acquisition of instrumental learning. Sham-operated animals showed sensitivity to both outcome devaluation and contingency degradation. Animals with dopaminergic lesions of the prelimbic cortex, but not the infralimbic cortex, failed to adapt their instrumental response to changes in contingency, whereas their response remained sensitive to outcome devaluation. In a second experiment, aimed at determining whether dopamine was specifically needed during contingency changes, we performed microinfusions of the dopamine D(1)/D(2) receptor antagonist flupenthixol in the prelimbic cortex only before contingency degradation sessions. Animals with infusions of flupenthixol failed to adapt their response to changes in contingency, thus replicating the deficit of animals with dopaminergic lesions in Experiment 1. These results demonstrate that dissociable neurobiological mechanisms support action-outcome relationships and goal representation, dopamine signaling in the prelimbic cortex being necessary for the former but not the latter

    Parallel Maturation of Goal-Directed Behavior and Dopaminergic Systems during Adolescence

    No full text
    Adolescence is a crucial developmental period characterized by specific behaviors reflecting the immaturity of decision-making abilities. However, the maturation of precise cognitive processes and their neurobiological correlates at this period remain poorly understood. Here, we investigate whether a differential developmental time course of dopamine (DA) pathways during late adolescence could explain the emergence of particular executive and motivational components of goal-directed behavior. First, using a contingency degradation protocol, we demonstrate that adolescent rats display a specific deficit when the causal relationship between their actions and their consequences is changed. When the rats become adults, this deficit disappears. In contrast, actions of adolescents remain sensitive to outcome devaluation or to the influence of a pavlovian-conditioned stimulus. This aspect of cognitive maturation parallels a delayed development of the DA system, especially the mesocortical pathway involved in action adaptation to rule changes. Unlike in striatal and nucleus accumbens regions, DA fibers and DA tissue content continue to increase in the medial prefrontal cortex from juvenile to adult age. Moreover, a sustained overexpression of DA receptors is observed in the prefrontal region until the end of adolescence. These findings highlight the relationship between the emergence of specific cognitive processes, in particular the adaptation to changes in action consequences, and the delayed maturation of the mesocortical DA pathway. Similar developmental processes in humans could contribute to the adolescent vulnerability to the emergence of several psychiatric disorders characterized by decision-making deficits

    No evidence that portion size influences food consumption in male Sprague Dawley rats.

    Get PDF
    In studies of eating behavior that have been conducted in humans, the tendency to consume more when given larger portions of food, known as the portion size effect (PSE), is one of the most robust and widely replicated findings. Despite this, the mechanisms that underpin it are still unknown. In particular, it is unclear whether the PSE arises from higher-order social and cognitive processes that are unique to humans or, instead, reflects more fundamental processes that drive feeding, such as conditioned food-seeking. Importantly, studies in rodents and other animals have yet to show convincing evidence of a PSE. In this series of studies, we used several methods to test for a PSE in adult male Sprague Dawley rats. Our approaches included using visually identifiable portions of a palatable food; training on a plate cleaning procedure; providing portion sizes of food pellets that were signaled by auditory and visual food-predictive cues; providing food with amorphous shape properties; and providing standard chow diet portions in home cages. In none of these manipulations did larger portions increase food intake. In summary, our data provide no evidence that a PSE is present in male Sprague Dawley rats, and if it is, it is more nuanced, dependent on experimental procedure, and/or smaller in size than it is in humans. In turn, these findings suggest that the widely-replicated PSE in humans may be more likely to reflect higher-order cognitive and social processes than fundamental conditioned behaviors
    corecore