16 research outputs found

    Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements

    Get PDF
    We study the local flow properties of various materials in a vane-in-cup geometry. We use magnetic resonance imaging techniques to measure velocities and particle concentrations in flowing Newtonian fluid, yield stress fluid, and in a concentrated suspension of noncolloidal particles in a yield stress fluid. In the Newtonian fluid, we observe that the θ\theta-averaged strain rate component dr,θd_{r,\theta} decreases as the inverse squared radius in the gap, in agreement with a Couette analogy. This allows direct comparison (without end-effect corrections) of the resistances to shear in vane and Couette geometries. Here, the mean shear stress in the vane-in-cup geometry is slightly lower than in a Couette cell of same dimensions, and a little higher than when the vane is embedded in an infinite medium. We also observe that the flow enters deeply the region between the blades, leading to significant extensional flow. In the yield stress fluid, in contrast with the usually accepted picture based on simulation results from the literature, we find that the layer of material that is sheared near the blades at low velocity is not cylindrical. There is thus a significant extensional component of shear that should be taken into account in the analysis. Finally and surprisingly, in the suspension, we observe that a thin non-cylindrical slip layer made of the pure interstitial yield stress fluid appears quickly at the interface between the sheared material and the material that moves as a rigid body between the blades. This feature can be attributed to the non-symmetric trajectories of the noncolloidal particles around the edges of the blades. This new important observation is in sharp contradiction with the common belief that the vane tool prevents slippage and may preclude the use of the vane tool for studying the flows of pasty materials with large particles

    Effect of coarse particle volume fraction on the yield stress and thixotropy of cementious materials

    Get PDF
    International audienceIn order to help in modelling the yield stress of fresh concrete, we study the behavior of suspensions of coarse particles in a thixotropic cement paste. Our aim is to relate the yield stress of these mixtures to the yield stress of the suspending cement paste, to the time passed at rest, and to the coarse particle volume fraction. We present here procedures that allow for (i) studying a homogeneous and isotropic suspension, (ii) comparing the yield stress of a given cement paste to that of the same cement paste added with particles, and (iii) accounting for the thixotropy of the cement paste. We observe that the yield stress of these suspensions of cement paste with coarse particles follows the very simple Chateau-Ovarlez-Trung model {[}X. Chateau, G. Ovarlez. K.L. Trung, Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, J. Rheol. (2008) 52 489-506.], consistently with the experimental results of Mahaut et al. {[}F. Mahaut, X. Chateau, P. Coussot, G. Ovarlez, Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids, J. Rheol. (2008) 52 287-313.] obtained with many different particles and suspending yield stress fluids. This consistency between the results obtained in various yield stress fluids shows that the yield stress of the suspension does not depend on the physicochemical properties of the suspending yield stress fluid; it only depends on its yield stress value. This shows that studies of suspensions in model yield stress fluids can be used as a general tool to infer the behavior of fresh concrete. Moreover, we show that the thixotropic structuration rate of the interstitial paste (its static yield stress increase rate in time) is not affected by the presence of the particles. As a consequence, it is sufficient to measure the thixotropic properties of the constitutive cement paste in order to predict the thixotropic structuration rate of a given fresh concrete. This structuration rate is predicted to have the same dependence on the coarse particle volume fraction as the yield stress

    Flows of suspensions of particles in yield stress fluids

    Get PDF
    International audienceWe study the rheological behavior of suspensions of noncolloidal spheres in yield stress fluids (concentrated emulsions). These are good model systems for understanding, e.g., the rheology of fresh concrete or debris flows, and more generally, the behavior of particles dispersed in any nonlinear material. We use magnetic resonance imaging techniques to investigate the flows of these yield stress suspensions in a concentric-cylinder Couette geometry. We extend the theoretical approach of Chateau et al. [J. Rheol. 52, 489–506 (2008)], valid for isotropic suspensions, to describe suspensions in simple shear flows, in which an anisotropic spatial distribution of particles is induced by flow. Theory and experiments show that the suspensions can be modeled by a Herschel–Bulkley behavior of same index as their interstitial fluid. We characterize the increase of their consistency and their yield stress with the particle volume fraction / in the 0%–50% range. We observe a good agreement between the experimental variations of the consistency with / and the theoretical prediction. This shows that the average apparent viscosity of the sheared interstitial material is correctly estimated and taken into account. We also observe shear-induced migration with similar properties as in a Newtonian fluid, which we predict theoretically, suggesting that particle normal stresses are proportional to the shear stress. However, the yield stress at flow stoppage increases much less than predicted. We also show that new features emerge in the rheology of the yield stress fluid when adding particles. We predict and observe the emergence of a nonzero normal stress difference at the yielding transition. We observe that the yield stress at flow start can differ from the yield stress at flow stoppage, and depends on flow history. It is likely a signature of a shear-dependent microstructure, due to the nonlinear behavior of the interstitial fluid, which makes these materials different from suspensions in Newtonian media. This is confirmed by direct characterization of shear-rate-dependent pair distribution functions using X-ray microtomography. This last observation explains why the theory predictions for the consistency can be correct while failing to model the yield stress at flow stoppage: a unique microstructure was indeed assumed as a first approximation. More sophisticated theories accounting for a shear-dependent microstructure are thus needed

    Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids

    Get PDF
    We study experimentally the behavior of isotropic suspensions of noncolloidal particles in yield stress fluids. This problem has been poorly studied in the literature, and only on specific materials. In this paper, we manage to develop procedures and materials that allow us to focus on the purely mechanical contribution of the particles to the yield stress fluid behavior, independently of the physicochemical properties of the materials. This allows us to relate the macroscopic properties of these suspensions to the mechanical properties of the yield stress fluid and the particle volume fraction, and to provide results applicable to any noncolloidal particle in any yield stress fluid. We find that the elastic modulus-concentration relationship follows a Krieger-Dougherty law, and we show that the yield stress-concentration relationship is related to the elastic modulus-concentration relationship through a very simple law, in agreement with results from a micromechanical analysis

    Rheological behaviour of non colloidal suspensions embedded in yield stress fluids

    No full text
    Nous avons étudié le comportement rhéologique de suspensions de particules non colloïdales plongées dans des fluides à seuil. Nous nous sommes focalisé sur la contribution purement mécanique des particules. Nous avons dans un premier temps étudié le comportement en régime solide en formulant de nombreux systèmes expérimentaux modèles. Nous avons mesuré les propriétés d’élasticité linéaire, ainsi que les propriétés de seuil. Nous trouvons des lois reliant les propriétés rhéologiques de la suspension à celles du fluide ainsi qu’à la fraction volumique en particules monodisperses pour une distribution isotrope. Nous validons une approche d’homogénéisation proposée par Chateau et al. reliant les propriétés linéaires aux propriétés non-linéaire par une loi simple qui permet ainsi de prédire le seuil de contrainte de ce type de matériaux. Cette approche est validée sur des mortiers modélisés par une suspension de billes de verre dans une pâte de ciment thixotrope. Dans un second temps, nous explorons le régime liquide et caractérisons le comportement en écoulement d’un fluide à seuil modèle, une émulsion, selon une modélisation d’Herschel-Bulkley d’exposant n=½. Nous montrons que cette loi reste valable pour une suspension de particules dans cette émulsion. Nous mesurons la consistance d’Herschel-Bulkley en fonction de la fraction volumique en particules et nous constatons un bon accord entre ces mesures et une loi prédite par l’approche d’homogénéisation de Chateau et al. Enfin, nous observons une distinction entre seuil d’arrêt et seuil de démarrage probablement dû à la distribution des particulesWe study rheological behaviour of non colloïdal particles suspensions embedded in yield stress fluids. We focus on strictly mechanical particles influence. First, we study solid domain with a large experiment panel on model materials. We measure linear elasticity and yield stress. We found law which link suspensions properties to interstitial fluids one and monodisperses particles concentration for an isotropic distribution. We compare our results to a homogenization approach by Chateau et al. which give us a very simple law between linear and non linear properties. This approach could predict the yield stress variation as a function of particles concentration with a very good agreement. Then, we validate this approach on a model mortar (glass beads in a thixotropic cement paste). In a second part, we explore liquid domain and characterize flowing behaviour of a yield stress model fluid, an emulsion, as a Herschel-Bulkley fluid with an exponent n =½. We show that this law still applicable for particles suspension in this emulsion with the same Herschel-Bulkley exponent. Then, we measure Herschel-Bulkley consistency as a function of particles concentration and found a good agreement with a law predicted by Chateau et al. from a homogenization approach. Finally, we observe difference between stopping yield stress and starting yield stress, this difference is probably due to particles distributio

    Influence de l'ajout particules sur la valeur du seuil de contrainte d'une pâte : approches micromécanique et expérimentale

    No full text
    Dans ce travail, on s'attache à prédire la valeur de la contrainte seuil nécessaire à la mise en écoulement d'une suspension de particules rigides dispersées dans un fluide à seuil. Pour cela, on établit tout d'abord une expression analytique simple permettant d'estimer la contrainte seuil de la suspension en fonction de celle du fluide suspendant, de la fraction volumique occupée par les particules et de la fraction volumique d'empilement maximal. On mesure ensuite le seuil de différentes suspensions de particules dans divers fluides à seuil modèles. L'accord entre les valeurs prédites et les données expérimentales est tout à fait satisfaisant. Pour finir, on montre qu'il est possible d'intégrer dans l'approche théorique un modèle permettant de prédire la fraction volumique d'empilement maximal de particules polydisperses. De nouveau, les résultats théoriques sont validés par comparaison à des données expérimentales pour des suspensions modèles bidisperses

    Lizards at the Peak: Physiological Plasticity Does Not Maintain Performance in Lizards Transplanted to High Altitude

    No full text
    International audienceWarming climates are facilitating the range expansion of many taxa to habitats that were formerly thermally inhospitable, including to higher latitudes and elevations. The potential for such colonization, however, varies widely among taxa. Because environmental factors may interact to affect colonization potential, an understanding of underlying physiological and behavioral mechanisms is necessary to predict how species will respond to potentially suitable habitats. For example, temperature and oxygen availability will interact to shape physiological and performance traits. Our model species, the wall lizard, Podarcis muralis, is a widely distributed ectotherm that continues to expand its range in Europe despite being limited by cold temperatures at high elevations and latitudes. To test the potential for organisms to expand to warming high-altitude environments, we conducted a transplant experiment to quantify the within-individual effects of high-altitude hypoxia on physiological and performance traits. Transplanted lizards maintained individual differences in physiological traits related to oxygen capacity and metabolism (hemoglobin concentration , hematocrit, and peak postexhaustion metabolic rate), as well as performance traits tied to fitness (sprint speed and running endurance). Although lizards altered blood biochemistry to increase oxygen-carrying capacity, their performance was reduced at high altitude. Furthermore, lizards at high altitude suffered a rapid loss of body condition over the 6-wk experiment , suggesting an energetic cost to hypoxia. Taken together, this demonstrates a limited potential for within-individual plasticity to facilitate colonization of novel high-altitude environments

    Sprint speed data associated with Gangloff et al. 2018

    No full text
    Provides experimental data on lizard (Podarcis muralis) sprint speed

    Primary data associated with Gangloff et al. 2018

    No full text
    Provides experimental data on lizard (Podarcis muralis) morphometrics, physiology, and performance. Used for all analyses in manuscript except sprint speed
    corecore