45 research outputs found

    Automated Perfusion Calculations vs. Visual Scoring of Collaterals and CBV-ASPECTS: Has the Machine Surpassed the Eye?

    Get PDF
    Acute ischemic stroke; Automated evaluation; Perfusion imagingAccidente cerebrovascular isquémico agudo; Evaluación automatizada; Imágenes de perfusiónAccident cerebrovascular isquèmic agut; Avaluació automatitzada; Imatge de perfusióPurpose Use of automated perfusion software has gained importance for imaging of stroke patients for mechanical thrombectomy (MT). We aim to compare four perfusion software packages: 1) with respect to their association with 3‑month functional outcome after successful reperfusion with MT in comparison to visual Cerebral Blood Volume - Alberta Stroke Program Early CT Score (CBV-ASPECTS) and collateral scoring and 2) with respect to their agreement in estimation of core and penumbra volume. Methods This retrospective, multicenter cohort study (2015–2019) analyzed data from 8 centers. We included patients who were functionally independent before and underwent successful MT of the middle cerebral artery. Primary outcome measurements were the relationship of core and penumbra volume calculated by each software, qualitative assessment of collaterals and CBV-APECTS with 3‑month functional outcome and disability (modified Rankin scale >2). Quantitative differences between perfusion software measurements were also assessed. Results A total of 215 patients (57% women, median age 77 years) from 8 centers fulfilled the inclusion criteria. Multivariable analyses showed a significant association of RAPID core (common odds ratio, cOR 1.02; p = 0.015), CBV-ASPECTS (cOR 0.78; p = 0.007) and collaterals (cOR 0.78; p = 0.001) with 3‑month functional outcome (shift analysis), while RAPID core (OR 1.02; p = 0.018), CBV-ASPECTS (OR 0.77; p = 0.024), collaterals (OR 0.78; p = 0.007) and OLEA core (OR 1.02; p = 0.029) were significantly associated with 3‑month functional disability. Mean differences on core estimates between VEOcore and RAPID were 13.4 ml, between syngo.via and RAPID 30.0 ml and between OLEA and RAPID −3.2 ml. Conclusion Collateral scoring, CBV-ASPECTS and RAPID were independently associated with functional outcome at 90 days. Core and Penumbra estimates using automated software packages varied significantly and should therefore be used with caution.Open access funding provided by University of Base

    Association Between Intravenous Thrombolysis and Clinical Outcomes Among Patients With Ischemic Stroke and Unsuccessful Mechanical Reperfusion.

    Get PDF
    IMPORTANCE Clinical evidence of the potential treatment benefit of intravenous thrombolysis preceding unsuccessful mechanical thrombectomy (MT) is scarce. OBJECTIVE To determine whether intravenous thrombolysis (IVT) prior to unsuccessful MT improves functional outcomes in patients with acute ischemic stroke. DESIGN, SETTING, AND PARTICIPANTS Patients were enrolled in this retrospective cohort study from the prospective, observational, multicenter German Stroke Registry-Endovascular Treatment between May 1, 2015, and December 31, 2021. This study compared IVT plus MT vs MT alone in patients with acute ischemic stroke due to anterior circulation large-vessel occlusion in whom mechanical reperfusion was unsuccessful. Unsuccessful mechanical reperfusion was defined as failed (final modified Thrombolysis in Cerebral Infarction grade of 0 or 1) or partial (grade 2a). Patients meeting the inclusion criteria were matched by treatment group using 1:1 propensity score matching. INTERVENTIONS Mechanical thrombectomy with or without IVT. MAIN OUTCOMES AND MEASURES Primary outcome was functional independence at 90 days, defined as a modified Rankin Scale score of 0 to 2. Safety outcomes were the occurrence of symptomatic intracranial hemorrhage and death. RESULTS After matching, 746 patients were compared by treatment arms (median age, 78 [IQR, 68-84] years; 438 women [58.7%]). The proportion of patients who were functionally independent at 90 days was 68 of 373 (18.2%) in the IVT plus MT and 42 of 373 (11.3%) in the MT alone group (adjusted odds ratio [AOR], 2.63 [95% CI, 1.41-5.11]; P = .003). There was a shift toward better functional outcomes on the modified Rankin Scale favoring IVT plus MT (adjusted common OR, 1.98 [95% CI, 1.35-2.92]; P < .001). The treatment benefit of IVT was greater in patients with partial reperfusion compared with failed reperfusion. There was no difference in symptomatic intracranial hemorrhages between treatment groups (AOR, 0.71 [95% CI, 0.29-1.81]; P = .45), while the death rate was lower after IVT plus MT (AOR, 0.54 [95% CI, 0.34-0.86]; P = .01). CONCLUSIONS AND RELEVANCE These findings suggest that prior IVT was safe and improved functional outcomes at 90 days. Partial reperfusion was associated with a greater treatment benefit of IVT, indicating a positive interaction between IVT and MT. These results support current guidelines that all eligible patients with stroke should receive IVT before MT and add a new perspective to the debate on noninferiority of combined stroke treatment

    Evaluation of intracranial stenting in a simulated training and assessment environment for neuroendovascular procedures

    Get PDF
    PurposeGiven the inherent complexity of neurointerventional procedures and the associated risks of ionizing radiation exposure, it is crucial to prioritize ongoing training and improve safety protocols. The aim of this study is to assess a training and evaluation in-vitro environment using a vascular model of M1 stenosis, within a clinical angiography suite, without relying on animal models or X-ray radiation.Materials and methodsUsing a transparent model replicating M1 stenosis, we conducted intracranial stenting procedures with four different setups (Gateway &amp; Wingspan, Gateway &amp; Enterprise, Neurospeed &amp; Acclino, and Pharos Vitesse). A video camera was integrated with the angiography system’s monitor for real-time visualization, while a foot switch was employed to simulate live fluoroscopy. Three neuroradiologists with varying levels of expertise performed each procedure for three times. The total duration of fluoroscopy as well as the time from passing the stenosis with the wire to completion of the procedure were recorded using a dedicated software designed for this experimental setup.ResultsCompared to the Gateway &amp; Wingspan procedure, the total fluoroscopy time reduced significantly with the Gateway &amp; Enterprise, Neurospeed &amp; Acclino, and Pharos Vitesse procedures by 51.56 s, 111.33 s, and 144.89 s, respectively (p &lt; 0.001). Additionally, physicians with under 2 years and over 5 years of experience reduced FT by 62.83 s and 106.42 s, respectively, (p &lt; 0.001), compared to a novice physician. Similar trends were noted for the time of wire distal to stenosis, with significant reductions for Neurospeed &amp; Acclino and Pharos Vitesse compared to both Gateway &amp; Wingspan as well as Gateway &amp; Enterprise (all p &lt; 0.001).ConclusionProcedures requiring wire exchange maneuvers exhibited nearly twice the fluoroscopy time in comparison to balloon-mounted stenting or stent-placement via PTA balloon catheters. The more experienced neuroradiologist demonstrated significantly quicker performance in line with expectations in a real-life clinical setting, when compared to the less experienced interventionalist. This in-vitro setup allowed the evaluation of alternative technical approaches and differences in experience of operators without the use of animal models or X-ray. The setup combines advantages of simulators and silicone vessel models in a realistic working environment

    Development of Cortical Lesion Volumes on Double Inversion Recovery MRI in Patients With Relapse-Onset Multiple Sclerosis

    Get PDF
    Background and Objective: In multiple sclerosis (MS) patients, Double Inversion Recovery (DIR) magnetic resonance imaging (MRI) can be used to detect cortical lesions (CL). While the quantity and distribution of CLs seems to be associated with patients' disease course, literature lacks frequent assessments of CL volumes (CL-V) in this context. We investigated the reliability of DIR for the longitudinal assessment of CL-V development with frequent follow-up MRIs and examined the course of CL-V progressions in relation to white-matter lesions (WML), contrast enhancing lesions (CEL) and clinical parameters in patients with Relapsing-Remitting Multiple Sclerosis (RRMS).Methods: In this post-hoc analysis, image- and clinical data of a subset of 24 subjects that were part of a phase IIa clinical trial on the “Safety, Tolerability and Mechanisms of Action of Boswellic Acids in Multiple Sclerosis (SABA)” (ClinicalTrials.gov, NCT01450124) were included. The study was divided in three phases (screening, treatment, study-end). All patients received 12 MRI follow-up-examinations (including DIR) during a 16-months period. CL-Vs were assessed for each patient on each follow-up MRI separately by two experienced neuroradiologists. Results of neurological screening tests, as well as other MRI parameters (WML number and volume and CELs) were included from the SABA investigation data.Results: Inter-rater agreement regarding CL-V assessment over time was good-to-excellent (κ = 0.89). Mean intraobserver variability was 1.1%. In all patients, a total number of 218 CLs was found. Total CL-Vs of all patients increased during the 4 months of baseline screening followed by a continuous and significant decrease from month 5 until study-end (p &lt; 0.001, Kendall'W = 0.413). A positive association between WML volumes and CL-Vs was observed during baseline screening. Decreased CL-V were associated with lower EDSS and also with improvements of SDMT- and SCRIPPS scores.Conclusion: DIR MRI seems to be a reliable tool for the frequent assessment of CL-Vs. Overall CL-Vs decreased during the follow-up period and were associated with improvements of cognitive and disability status scores. Our results suggest the presence of short-term CL-V dynamics in RRMS patients and we presume that the laborious evaluation of lesion volumes may be worthwhile for future investigations.Clinical Trial Numbers:www.ClinicalTrials.gov, “The SABA trial”; number: NCT0145012

    Influence of additive manufacturing parameters on patient-specific small vessel models based on the neurointerventional simulator HANNES

    No full text
    With the increasing technical development, neuroradiological treatment of diseases in small vessels (diameter of < 2 mm), like arteriovenous malformations, is becoming possible. Endovascular interventions are technically very difficult and require learning and practice in the use of the instruments. There is a great need for in-vitro training simulators to avoid inappropriate animal experiments. This article describes the analysis of influencing parameters additively manufactured patient specific small vessel models based on the existing neurointerventional simulator HANNES and an established workflow for the fabrication of vessel models. Many printing parameters during the design or fabrication of the model may have an influence on the small complex hollow structures. In this article, a selection of parameters of the stereolithography process and their possible influence are explained in more detail. Subsequently, the findings should be investigated in a printing study for a more detailed analysis of the parameters.Federal Ministry of Education and Research (BMBF

    Feasibility of a customizable training environment for neurointerventional skills assessment.

    No full text
    ObjectiveTo meet increasing demands to train neuroendovascular techniques, we developed a dedicated simulator applying individualized three-dimensional intracranial aneurysm models ('HANNES'; Hamburg Anatomic Neurointerventional Endovascular Simulator). We hypothesized that HANNES provides a realistic and reproducible training environment to practice coil embolization and to exemplify disparities between neurointerventionalists, thus objectively benchmarking operators at different levels of experience.MethodsSix physicians with different degrees of neurointerventional procedural experience were recruited into a standardized training protocol comprising catheterization of two internal carotid artery (ICA) aneurysms and one basilar tip aneurysm, followed by introduction of one framing coil into each aneurysm and finally complete coil embolization of one determined ICA aneurysm. The level of difficulty increased with every aneurysm. Fluoroscopy was recorded and assessed for procedural characteristics and adverse events.ResultsPhysicians were divided into inexperienced and experienced operators, depending on their experience with microcatheter handling. Mean overall catheterization times increased with difficulty of the aneurysm model. Inexperienced operators showed longer catheterization times (median; IQR: 47; 30-84s) than experienced operators (21; 13-58s, p = 0.011) and became significantly faster during the course of the attempts (rho = -0.493, p = 0.009) than the experienced physicians (rho = -0.318, p = 0.106). Number of dangerous maneuvers throughout all attempts was significantly higher for inexperienced operators (median; IQR: 1.0; 0.0-1.5) as compared to experienced operators (0.0; 0.0-1.0, p = 0.014).ConclusionHANNES represents a modular neurointerventional training environment for practicing aneurysm coil embolization in vitro. Objective procedural metrics correlate with operator experience, suggesting that the system could be useful for assessing operator proficiency

    Novel synthetic clot analogs for in-vitro stroke modelling

    No full text
    Purpose The increased demand for training of mechanical thrombectomy in ischemic stroke and development of new recanalization devices urges the creation of new simulation models both for training and device assessment. Clots properties have shown to play a role in procedural planning and thrombectomy device effectiveness. In this study, we analyzed the characteristics and applicability of completely synthetic, animal-free clots in the setting of an invitro model of mechanical thrombectomy for training and device assessment. Methods Synthetic clots based on agarose (n = 12) and silicone (n = 11) were evaluated in an in-vitro neurointervention simulation of mechanical thrombectomy with clot extraction devices. Calcified clots of mixed nature were simulated with addition of 3D printed structures. 9 clots were excluded due to insufficient vessel occlusion and failure to integrate with clot extraction device. Synthetic thrombi were characterized and compared using a categorical score-system on vessel occlusion, elasticity, fragmentation, adherence and device integration. Results Both agarose-based and silicone-based clots demonstrated relevant flow arrest and a good integration with the clot extraction device. Silicone-based clots scored higher on adherence to the vessel wall and elasticity. Conclusion Selected synthetic clots can successfully be implemented in an in-vitro training environment of mechanical thrombectomy. The clots' different properties might serve to mimic fibrin-rich and red blood cell-rich human thrombi

    Iterative Reconstruction Improves Both Objective and Subjective Image Quality in Acute Stroke CTP

    No full text
    <div><p>Purpose</p><p>Computed tomography perfusion (CTP) imaging in acute ischemic stroke (AIS) suffers from measurement errors due to image noise. The purpose of this study was to investigate if iterative reconstruction (IR) algorithms can be used to improve the diagnostic value of standard-dose CTP in AIS.</p><p>Methods</p><p>Twenty-three patients with AIS underwent CTP with standardized protocol and dose. Raw data were reconstructed with filtered back projection (FBP) and IR with intensity levels 3, 4, 5. Image quality was objectively (quantitative perfusion values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)) and subjectively (overall image quality) assessed. Ischemic core and perfusion mismatch were visually rated. Discriminative power for tissue outcome prediction was determined by the area under the receiver operating characteristic curve (AUC) resulting from the overlap between follow-up infarct lesions and stepwise thresholded CTP maps.</p><p>Results</p><p>With increasing levels of IR, objective image quality (SNR and CNR in white matter and gray matter, elimination of error voxels) and subjective image quality improved. Using IR, mean transit time (MTT) was higher in ischemic lesions, while there was no significant change of cerebral blood volume (CBV) and cerebral blood flow (CBF). Visual assessments of perfusion mismatch changed in 4 patients, while the ischemic core remained constant in all cases. Discriminative power for infarct prediction as represented by AUC was not significantly changed in CBV, but increased in CBF and MTT (mean (95% CI)): 0.72 (0.67–0.76) vs. 0.74 (0.70–0.78) and 0.65 (0.62–0.67) vs 0.67 (0.64–0.70).</p><p>Conclusion</p><p>In acute stroke patients, IR improves objective and subjective image quality when applied to standard-dose CTP. This adds to the overall confidence of CTP in acute stroke triage.</p></div

    Number of patients rated with a clinically relevant perfusion mismatch.

    No full text
    <p>Number of patients rated with a clinically relevant perfusion mismatch (> 20% mismatch between CBV and MTT lesion). Using FBP, 13 patients were rated positively. This number increased to 17 using IR level 5. The difference was not statistically significant.</p
    corecore