42 research outputs found

    Influencia de la estructura electrónica local en las propiedades de las superficies y su estudio mediante microscopía de efecto túnel

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 05-10-200

    Graphene grown on transition metal substrates: Versatile templates for organic molecules with new properties and structures

    Get PDF
    The interest in graphene (a carbon monolayer) adsorbed on metal surfaces goes back to the 60’s, long before isolated graphene was produced in the laboratory. Owing to the carbon-metal interaction and the lattice mismatch between the carbon monolayer and the metal surface, graphene usually adopts a rippled structure, known as moir´e, that confers it interesting electronic properties not present in isolated graphene. These moir´e structures can be used as versatile templates where to adsorb, isolate and assemble organic-molecule structures with some desired geometric and electronic properties. In this review, we first describe the main experimental techniques and the theoretical methods currently available to produce and characterize these complex systems. Then, we review the diversity of moir´e structures that have been reported in the literature and the consequences for the electronic properties of graphene, attending to the magnitude of the lattice mismatch and the type of interaction, chemical or physical, between graphene and the metal surface. Subsequently, we address the problem of the adsorption of single organic molecules and then of several ones, from dimers to complete monolayers, describing both the different arrangements that these molecules can adopt as well as their physical and chemical properties. We pay a special attention to graphene/Ru(0001) due to its exceptional electronic properties, which have been used to induce long-range magnetic order in tetracyanoquinodimethane (TCNQ) monolayers, to catalyze the (reversible) reaction between acetonitrile and TCNQ molecules and to efficiently photogenerate large acenes

    Probing the phase transition to a coherent 2D Kondo Lattice

    Full text link
    Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported. The temperature of the system is steadily lowered and by using high-resolution scanning tunneling spectroscopy, the phase transition leading to the Kondo lattice is followed. Above 27 K the interaction between the Mott insulator and the metal is negligible and both keep their original electronic properties intact. Below 27 K the Kondo screening of the localized electrons in the Mott insulator begins and below 11 K the formation of a coherent quantum electronic state extended to the entire sample, i.e., the Kondo lattice, takes place. By means of density functional theory, the electronic properties of the system and its evolution with temperature are explained. The findings contribute to the exploration of unconventional states in 2D correlated materialsThis work was supported by Ministerio de Ciencia, Innovación y Universidades through grants, PID2021-128011NB-I00 and PID2019-105458RBI00. Ministerio de Ciencia e Innovación and Comunidad de Madrid through grants “Materiales Disruptivos Bidimensionales (2D)” (MAD2DCM)-UAM and “Materiales Disruptivos Bidimensionales (2D)” (MAD2DCM)-IMDEA-NC funded by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union. Comunidad de Madrid through grants NMAT2D-CM P20128/NMT-4511 and NanoMagCost. IMDEA Nanoscience acknowledges support from the “‘Severo Ochoa”’ Programme for Centres of Excellence in R&D CEX2020-001039-S. IFIMAC acknowledges support from the “‘María de Maeztu”’ Programme for Units of Excellence in R&D CEX2018-000805-M. M.G. thanks Ministerio de Ciencia, Innovación y Universidades “Ramón y Cajal” Fellowship RYC2020-029317-I. Allocation of computing time at the Centro de Computación Científica at the Universidad Autónoma de Madrid, the CINECA Consortium INF16_npqcd Project, and Newton HPCC Computing Facility at the University of Calabria (MP

    Organic covalent patterning of nanostructured graphene with selectivity at the atomic level

    Get PDF
    Organic covalent functionalization of graphene with long-range periodicity is highly desirable-it is anticipated to provide control over its electronic, optical, or magnetic properties-and remarkably challenging. In this work we describe a method for the covalent modification of graphene with strict spatial periodicity at the nanometer scale. The periodic landscape is provided by a single monolayer of graphene grown on Ru(0001) that presents a moiré pattern due to the mismatch between the carbon and ruthenium hexagonal lattices. The moiré contains periodically arranged areas where the graphene-ruthenium interaction is enhanced and shows higher chemical reactivity. This phenomenon is demonstrated by the attachment of cyanomethyl radicals (CH2CN•) produced by homolytic breaking of acetonitrile (CH3CN), which is shown to present a nearly complete selectivity (>98%) binding covalently to graphene on specific atomic sites. This method can be extended to other organic nitriles, paving the way for the attachment of functional molecules

    Tuning intermolecular charge transfer in donor-acceptor two-dimensional crystals on metal surfaces

    Get PDF
    Organic charge transfer (CT) compounds display a wide range of exotic electronic properties (charge-density wave stabilization, Peierls transitions, etc.) depending on the amount of charge transferred from the donor (D) to the acceptor (A) species. A complete exploration of the complex electronic phase diagrams for such compounds would thus require methods to systematically tune the amount of charge exchanged in the CT process. This has proven however challenging in the past: chemical functionalization of the constituent molecules can also affect the packing of the molecular units in the crystal, whereas changing D:A stoichiometry is often not possible in the bulk. Interestingly, it was recently found that multiple stoichiometries can actually be achieved by codeposition of different amounts of D and A molecules on metal surfaces. The question, however, of whether CT processes between D and A molecules can be tuned with the D:A ratio in such mixtures has not yet been studied, and it is no trivial matter, since competing CT processes between the metal surface and the organic adsorbates might hinder interadsorbate charge transfer. Here we demonstrate that the CT process from the organic donor tetrathiafulvalene (TTF) to the acceptor tetracyanoquino-p-dimethane (TCNQ) can be tuned with exquisite accuracy (∼0.1 e) by controlling the stoichiometry of D:A cocrystals deposited on Ag(111). This control opens new avenues to explore the complex phase diagrams of organic CT compounds and to tailor their electronic properties.The authors acknowledge financial support from the Spanish Ministry for Economy and Competitiveness (Grants FIS2012-33011, FIS2015-67367-C2-1-P, FIS2013-42002-R, FIS2016-77889-R, CTQ2013-43698-P, CTQ2016-76061-P), the regional government of Comunidad de Madrid (Grants S2009/MAT1726 and S2013/MIT-3007), Universidad Autónoma de Madrid (UAM/48) and IMDEA Nanoscience. L.F. acknowledges financial support from MIUR (PRIN-2010BNZ3F2, Project DESCARTES), S.D.-T. acknowledges the ‘“Ramón y Cajal”’ program of the MINECO (RYC-2010-07019), and the María de Maeztu Programme for Units of Excellence in R&D of the MINECO (MDM-2014-0377)

    Electronic Properties of Sulfur Covered Ru(0001) Surfaces

    Get PDF
    The structural properties of sulfur superstructures adsorbed on Ru(0001) have been widely studied in the past. However, much less effort has been devoted to determine their electronic properties. To understand the connection between structural and elec- tronic properties, we have carried out density functional theory periodic boundary calculations mimicking the four long range ordered sulfur superstructures identified experimentally by means of scanning tunneling microscopy (STM) techniques. Our simulations allow us to characterize the nature of the sulfur-Ru bond, the charge trans- fer between the Ru substrate and the sulfur adlayers, the interface states, as well as a parabolic state recently identified in STM experiments. A simple analysis, based on a one-dimensional model, reveals that this parabolic state is related to a potential well state, formed in the surface when the concentration of sulfur atoms is large enough to generate a new minimum in the surface potential
    corecore