4,624 research outputs found

    Is the energy density of the ground state of the sine-Gordon model unbounded from below for beta^2 > 8 pi ?

    Full text link
    We discuss Coleman's theorem concerning the energy density of the ground state of the sine-Gordon model proved in Phys. Rev. D 11, 2088 (1975). According to this theorem the energy density of the ground state of the sine-Gordon model should be unbounded from below for coupling constants beta^2 > 8 pi. The consequence of this theorem would be the non-existence of the quantum ground state of the sine-Gordon model for beta^2 > 8 pi. We show that the energy density of the ground state in the sine-Gordon model is bounded from below even for beta^2 > 8 pi. This result is discussed in relation to Coleman's theorem (Comm. Math. Phys. 31, 259 (1973)), particle mass spectra and soliton-soliton scattering in the sine-Gordon model.Comment: 22 pages, Latex, no figures, revised according to the version accepted for publication in Journal of Physics

    Quasiequilibrium sequences of black-hole--neutron-star binaries in general relativity

    Get PDF
    We construct quasiequilibrium sequences of black hole-neutron star binaries for arbitrary mass ratios by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition. We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics, and account for the black hole by imposing equilibrium boundary conditions on the surface of an excised sphere (the apparent horizon). In this paper we focus on irrotational configurations, meaning that both the neutron star and the black hole are approximately nonspinning in an inertial frame. We present results for a binary with polytropic index n=1, mass ratio M_{irr}^{BH}/M_{B}^{NS}=5 and neutron star compaction M_{ADM,0}^{NS}/R_0=0.0879, where M_{irr}^{BH} is the irreducible mass of the black hole, M_{B}^{NS} the neutron star baryon rest-mass, and M_{ADM,0}^{NS} and R_0 the neutron star Arnowitt-Deser-Misner mass and areal radius in isolation, respectively. Our models represent valid solutions to Einstein's constraint equations and may therefore be employed as initial data for dynamical simulations of black hole-neutron star binaries.Comment: 5 pages, 1 figure, revtex4, published in Phys.Rev.

    Casimir Scaling from Center Vortices: Towards an Understanding of the Adjoint String Tension

    Get PDF
    We argue that the approximate ``Casimir scaling'' of the string tensions of higher-representation Wilson loops is an effect due to the finite thickness of center vortex configurations. It is shown, in the context of a simple model of the Z(2) vortex core, how vortex condensation in Yang-Mills theory can account for both Casimir scaling in intermediate size loops, and color-screening in larger loops. An implication of our model is that the deviations from exact Casimir scaling, which tend to grow with loop size, become much more pronounced as the dimensionality of the group representation increases.Comment: 13 pages, including 3 eps figures, Latex2e. Two references adde

    Importance of cooling in triggering the collapse of hypermassive neutron stars

    Full text link
    The inspiral and merger of a binary neutron star (NSNS) can lead to the formation of a hypermassive neutron star (HMNS). As the HMNS loses thermal pressure due to neutrino cooling and/or centrifugal support due to gravitational wave (GW) emission, and/or magnetic breaking of differential rotation it will collapse to a black hole. To assess the importance of shock-induced thermal pressure and cooling, we adopt an idealized equation of state and perform NSNS simulations in full GR through late inspiral, merger, and HMNS formation, accounting for cooling. We show that thermal pressure contributes significantly to the support of the HMNS against collapse and that thermal cooling accelerates its "delayed" collapse. Our simulations demonstrate explicitly that cooling can induce the catastrophic collapse of a hot hypermassive neutron star formed following the merger of binary neutron stars. Thus, cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime of the HMNS remnant and to extract information about the NS equation of state, cooling mechanisms, bar instabilities and B-fields from the GWs emitted during the transient phase prior to BH formation.Comment: 13 pages, 7 figures, matches published versio

    In situ stress analysis of multilayer environmental barrier coatings

    Get PDF
    The biaxial stress and thermal expansion of multilayer doped-aluminosilicate environmental barrier coatings were measured in situ during cooling using microfocused high-energy X-rays in transmission. Coating stresses during cooling from 1000 °C were measured for as-sprayed and thermally cycled samples. In the as-sprayed state, tensile stresses as high as 75 MPa were measured in the doped-aluminosilicate topcoat at 375 °C, after which a drop in the stress occurred accompanied by through-thickness cracking of the two outermost layers. After thermally cycling the samples, the stress in the topcoat was reduced to approximately 50 MPa, and there was no drop in stress upon cooling. This stress reduction was attributed to a crystallographic phase transformation of the topcoat and the accompanying change in thermal expansion coefficient. The addition of a doped aluminosilicate to the mullite layer did not lower the stress in the topcoat, but may offer increased durability due to an increased compressive stress

    Are there Local Minima in the Magnetic Monopole Potential in Compact QED?

    Full text link
    We investigate the influence of the granularity of the lattice on the potential between monopoles. Using the flux definition of monopoles we introduce their centers of mass and are able to realize continuous shifts of the monopole positions. We find periodic deviations from the 1/r1/r-behavior of the monopole-antimonopole potential leading to local extrema. We suppose that these meta-stabilities may influence the order of the phase transition in compact QED.Comment: 11 pages, 5 figure

    On the unification of dwarf and giant elliptical galaxies

    Full text link
    The near orthogonal distributions of dwarf elliptical (dE) and giant elliptical (E) galaxies in the mu_e-Mag and mu_e-log(R_e) diagrams have been interpreted as evidence for two distinct galaxy formation processes. However, continuous, linear relationships across the alleged dE/E boundary at M_B = -18 mag - such as those between central surface brightness (mu_0) and (i) galaxy magnitude and (ii) light-profile shape (n) - suggest a similar, governing formation mechanism. Here we explain how these latter two linear trends necessitate a different behavior for dE and E galaxies, exactly as observed, in diagrams involving mu_e (and also _e). A natural consequence is that the distribution of dEs and Es in Fundamental Plane type analyses that use the associated intensity I_e, or _e, are expected to appear different. Together with other linear trends across the alleged dE/E boundary, such as those between luminosity and color, metallicity, and velocity dispersion, it appears that the dEs form a continuous extension to the E galaxies. The presence of partially depleted cores in luminous (M_B < -20.5 mag) Es does however signify the action of a different physical process at the centers (< ~300 pc) of these galaxies.Comment: 5 pages from the proceedings of the 2004 conference "Penetrating bars through masks of cosmic dust: the Hubble tuning fork strikes a new note". Edited by D. L. Block, I. Puerari, K. C. Freeman, R. Groess, and E. K. Bloc
    • …
    corecore