33 research outputs found

    Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromised hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome.We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%.This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes

    Quantitation of Neuropeptides in Cpe

    No full text

    Mass Spectrometry Applications in Biomedical Research

    Get PDF

    Synthesis of Alkenyl Sulfides Through the Iron-Catalyzed Cross-Coupling Reaction of Vinyl Halides with Thiols

    No full text
    We report here the iron-catalyzed cross-coupling reaction of alkyl vinyl halides with thiols. While many works devoted on the coupling of thiols with alkyl vinyl iodides. Interestingly, the known S-vinylation of vinyl bromides and chlorides are limited to 1-(2-bromovinyl)benzene and 1-(2-chlorovinyl)benzene. Investigation on the coupling reaction of challenging alkyl vinyl bromides and chlorides with thiols is rare. Since the coupling of 1-(2-bromovinyl)benzene and 1-(2-chlorovinyl)benzene with thiols can be performed in the absence of any catalyst, here we focus on the coupling of thiols with alkyl vinyl halides. This system is generally reactive for alkyl vinyl iodides and bromides to provide the products in good yields. 1-(Chloromethylidene)-4-tert-butyl-cyclohexane was also coupled with thiols, giving the targets in moderate yields
    corecore