15 research outputs found
Water‐Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides
Sequence‐specific recognition of peptides is of enormous importance to many chemical and biological applications, but has been difficult to achieve due to the minute differences in the side chains of amino acids. Acidic peptides are known to play important roles in cell growth and gene expression. In this work, we report molecularly imprinted micelles coded with molecular recognition information for the acidic and hydrophobic side chains of acidic peptides. The imprinted receptors could distinguish acidic amino acids from other polar and nonpolar amino acids, with dissociation constants of tens of nanomolar for biologically active peptides containing up to 18 amino acids
Pre-regulation of the planar chirality of pillar[5]arenes for preparing discrete chiral nanotubes
Regulating the chirality of macrocyclic host molecules and supramolecular assemblies is crucial because chirality often plays a role in governing the properties of these systems. Herein, we describe pillar[5]arene-based chiral nanotube formation via pre-regulation of the building blocks' chirality, which is different from frequently used post-regulation strategies. The planar chirality of rim-differentiated pillar[5]arenes is initially regulated by chiral awakening and further induction/inversion through stepwise achiral external stimuli. The pre-regulated chiral information is well stored in discrete nanotubes by interacting with a per-alkylamino-substituted pillar[5]arene. Such pre-regulation is more efficient than post-regulating the chirality of nanotubes
Carbon-rich materials with three-dimensional ordering at the angstrom level
Carbon-rich materials, which contain over 90% carbon, have been mainly synthesized by the carbonization of organic compounds. However, in many cases, their original molecular and ordered structures are decomposed by the carbonization process, which results in a failure to retain their original three-dimensional (3D) ordering at the angstrom level. Recently, we successfully produced carbon-rich materials that are able to retain their 3D ordering at the angstrom level even after the calcination of organic porous pillar[6]arene supramolecular assemblies and cyclic porphyrin dimer assemblies. Other new pathways to prepare carbon-rich materials with 3D ordering at the angstrom level are the controlled polymerization of designed monomers and redox reaction of graph. Electrocatalytic application using these materials is described
Discrete chiral organic nanotubes by stacking pillar[5]arenes using covalent linkages
Owing to their unique one-dimensional hollow structures, organic nanotubes have been widely explored in recent years. Covalent organic nanotubes (CONs) can be prepared by stacking building blocks, such as macrocycles, through covalent linkages. However, because of the mismatched covalent connections, controllable synthesis of the discrete CONs with clear structures, such as sidewall and chirality, is a challenging target. In this work, by coupling two pillar[5]arenes through dynamic covalent bonds, thermodynamically stable discrete CONs with 5-fold symmetry are successfully prepared. Three different chiral CONs are separated, including homo-CONs, consisting of two enantiomers (pR, pR and pS, pS), and hetero-CON, consisting of the meso form (pR, pS). These CONs show negative allosteric binding affinities toward guest molecules, which are not observed in individual pillar[5]arenes
State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors
Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by n-alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the C₂F₅ fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the n-alkane guest vapors, respectively. Furthermore, the n-alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the n-alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the n-alkane guest vapor
CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality
Herein, we report the synthesis and planar chiral properties of a pair of water-soluble cationic pillar[5]arenes with stereogenic carbons. Interestingly, although units of the molecules were rotatable, only one planar chiral diastereomer existed in water in both cases. As a new type of chiral source, these molecules transmitted chiral information from the planar chiral cavities to the assembly of a water-soluble extended π-conjugated compound, affording circularly polarized luminescence (CPL). The chirality transfer process and resulting CPL were extremely sensitive to the feed ratio of the chiral pillar[5]arenes owing to the combined action of their planar chirality, bulkiness, and strong binding properties. When a limited amount of chiral source was added, further assembly of the extended π-conjugated compound into helical fibers with CPL was triggered. Unexpectedly, larger amounts of chiral source destroyed the helical fiber assemblies, resulting in elimination of the chirality and CPL properties from the assembled structures
Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes
Real time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers
Water‐Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides
Sequence‐specific recognition of peptides is of enormous importance to many chemical and biological applications, but has been difficult to achieve due to the minute differences in the side chains of amino acids. Acidic peptides are known to play important roles in cell growth and gene expression. In this work, we report molecularly imprinted micelles coded with molecular recognition information for the acidic and hydrophobic side chains of acidic peptides. The imprinted receptors could distinguish acidic amino acids from other polar and nonpolar amino acids, with dissociation constants of tens of nanomolar for biologically active peptides containing up to 18 amino acids.This is the peer-reviewed version of the following article: Fa, Shixin, and Yan Zhao. "Water‐Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides." Chemistry–A European Journal 24, no. 1 (2018): 150-158, which has been published in final form at DOI: 10.1002/chem.201703760. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.</p
Peptide-Binding Nanoparticle Materials with Tailored Recognition Sites for Basic Peptides
Peptides
rich in basic residues such as lysine and arginine play
important roles in biology such as bacterial defense and cell penetration.
Although peptide-binding materials with high sequence specificity
have broad potential applications, the diverse functionalities of
peptide side chains make their molecular recognition extremely difficult.
By covalently capturing micelles of a doubly cross-linkable surfactant
with solubilized peptide templates, we prepared water-soluble molecularly
imprinted nanoparticles with high sequence specificity for basic peptides.
The nanoparticles interact with the side chains of lysine and arginine
through hydrogen bonds strengthened by the nonpolar environment of
the micelle. They have hydrophobic pockets in their core complementary
to the hydrophobic side chains in size and shape. These recognition
sites allowed the micelles to bind basic biological peptides strongly
in water, with tens to hundreds of nanomolar in binding affinity