6 research outputs found

    Silicon optical modulators

    Get PDF
    Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future

    Ultracompact (3 μm) silicon slow-light optical modulator

    Get PDF
    This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). The work is also supported by the research programs NanonextNL and MEMPHIS, funded by the Dutch ministry of economic affairs. We also acknowledge financial support by the EPSRC through the “UK Silicon Photonics” grant.Wavelength-scale optical modulators are essential building blocks for future on-chip optical interconnects. Any modulator design is a trade-off between bandwidth, size and fabrication complexity, size being particularly important as it determines capacitance and actuation energy. Here, we demonstrate an interesting alternative that is only 3 mm long, only uses silicon on insulator (SOI) material and accommodates several nanometres of optical bandwidth at 1550 nm. The device is based on a photonic crystal waveguide: by combining the refractive index shift with slow-light enhanced absorption induced by free-carrier injection, we achieve an operation bandwidth that significantly exceeds the shift of the bandedge. We compare a 3 mm and an 80 mm long modulator and surprisingly, the shorter device outperforms the longer one. Despite its small size, the device achieves an optical bandwidth as broad as 7 nm for an extinction ratio of 10 dB, and modulation times ranging between 500 ps and 100 ps.Publisher PDFPeer reviewe

    Dynamics of composite, sandwich, and stiffened shell-type structures

    No full text

    Search for associated production of dark matter with a Higgs boson decaying to b(b)over-bar or gamma gamma at root s=13 TeV

    No full text
    A search for dark matter is performed looking for events with large missing transverse momentum and a Higgs boson decaying either to a pair of bottom quarks or to a pair of photons. The data from proton-proton collisions at a center-of-mass energy of 13TeV, collected in 2015 with the CMS detector at the LHC, correspond to an integrated luminosity of 2.3 fb(-1). Results are interpreted in the context of a Z'-two-Higgs-doublet model, where the gauge symmetry of the standard model is extended by a U(1) Z' group, with a new massive Z' gauge boson, and the Higgs sector is extended with four additional Higgs bosons. In this model, a high-mass resonance Z' decays into a pseudoscalar boson A and a light SM-like scalar Higgs boson, and the A decays to a pair of dark matter particles. No signi fi cant excesses are observed over the background prediction. Combining results from the two decay channels yields exclusion limits in the signal cross section in the m(Z')-m(A) phase space. For example, the observed data exclude the Z' mass range from 600 to 1860 GeV, for Z' coupling strength gZ' = 0: 8, the coupling of A with dark matter particles g(X) = 1, the ratio of the vacuum expectation values tan beta = 1, and m(A) = 300GeV. The results of this analysis are valid for any dark matter particle mass below 100 GeV
    corecore