6 research outputs found

    Utilizing FEM-Software to quantify pre- and post-interventional cardiac reconstruction data based on modelling data sets from surgical ventricular repair therapy (SVRT) and cardiac resynchronisation therapy (CRT)

    Get PDF
    BACKGROUND: Left ventricle (LV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volumetry and geometry analysis of the LV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. METHOD: A Philips/HP Sonos 5500 ultrasound device stores volume data as time-resolved 4D volume data sets. In this prospective study TomTec LV Analysis TEE(© )Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. With the software FemCoGen(© )a quantification of partial volumes and surface directions of the LV was carried out for two patients data sets. One patient underwent surgical ventricular repair therapy (SVR) and the other a cardiac resynchronisation therapy (CRT). RESULTS: For both patients a detailed volume and surface direction analysis is provided. Partial volumes as well as normal directions to the LV surface are pre- and post-interventionally compared. CONCLUSION: The operation results for both patients are quantified. The quantification shows treatment details for both interventions (e.g. the elimination of the discontinuities for CRT intervention and the segments treated for SVR intervention). The LV quantification is feasible in the cardiac OR and it gives a detailed and immediate quantitative feedback of the quality of the intervention to the medical

    Comparison of 2D and 3D calculation of left ventricular torsion as circumferential-longitudinal shear angle using cardiovascular magnetic resonance tagging

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To compare left ventricular (LV) torsion represented as the circumferential-longitudinal (CL) shear angle between 2D and 3D quantification, using cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR tagging was performed in six healthy volunteers. From this, LV torsion was calculated using a 2D and a 3D method. The cross-correlation between both methods was evaluated and comparisons were made using Bland-Altman analysis.</p> <p>Results</p> <p>The cross-correlation between the curves was <it>r</it><sup>2 </sup>= 0.97 ± 0.02. No significant time-delay was observed between the curves. Bland-Altman analysis revealed a significant positive linear relationship between the difference and the average value of both analysis methods, with the 2D results showing larger values than the 3D. The difference between both methods can be explained by the definition of the 2D method.</p> <p>Conclusion</p> <p>LV torsion represented as CL shear quantified by the 2D and 3D analysis methods are strongly related. Therefore, it is suggested to use the faster 2D method for torsion calculation.</p

    Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA): Study protocol for a randomized controlled trial

    Get PDF
    Background: The incidence of cardiovascular disease (CVD) in rheumatoid arthritis (RA) is increased compared to the general population. Immune dysregulation and systemic inflammation are thought to be associated with this increased risk. Early diagnosis with immediate treatment and tight control of RA forms a central treatment paradigm. It remains unclear, however, whether using tumor necrosis factor inhibitors (TNFi) to achieve remission confer additional beneficial effects over standard therapy, especially on the development of CVD. Methods/Design: Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA) is a prospective cardiovascular imaging study that bolts onto an existing single-centre, randomized controlled trial, VEDERA (Very Early versus Delayed Etanercept in Rheumatoid Arthritis). VEDERA will recruit 120 patients with early, treatment-naïve RA, randomized to TNFi therapy etanercept (ETN) combined with methotrexate (MTX), or therapy with MTX with or without additional synthetic disease modifying anti-rheumatic drugs with escalation to ETN following a 'treat-to-target' regimen. VEDERA patients will be recruited into CADERA and undergo cardiac magnetic resonance (CMR) assessment with; cine imaging, rest/ stress adenosine perfusion, tissue-tagging, aortic distensibility, T1 mapping and late gadolinium imaging. Primary objectives are to detect the prevalence and change of cardiovascular abnormalities by CMR between TNFi and standard therapy over a 12-month period. All patients will enter an inflammatory arthritis registry for long-term follow-up. Discussion: CADERA is a multi-parametric study describing cardiovascular abnormalities in early, treatment-naïve RA patients, with assessment of changes at one year between early biological therapy and conventional therapy
    corecore