5,160 research outputs found
The role of avatars in e-government interfaces
This paper investigates the use of avatars to communicate live message in e-government interfaces. A comparative study is presented that evaluates the contribution of multimodal metaphors (including avatars) to the usability of interfaces for e-government and user trust. The communication metaphors evaluated included text, earcons, recorded speech and avatars. The experimental platform used for the experiment involved two interface versions with a sample of 30 users. The results demonstrated that the use of multimodal metaphors in an e-government interface can significantly contribute to enhancing the usability and increase trust of users to the e-government interface. A set of design guidelines, for the use of multimodal metaphors in e-government interfaces, was also produced
New possibility of the ground state of quarter-filled one-dimensional strongly correlated electronic system interacting with localized spins
We study numerically the ground state properties of the one-dimensional
quarter-filled strongly correlated electronic system interacting
antiferromagnetically with localized spins. It is shown that the
charge-ordered state is significantly stabilized by the introduction of
relatively small coupling with the localized spins. When the coupling becomes
large the spin and charge degrees of freedom behave quite independently and the
ferromagnetism is realized. Moreover, the coexistence of ferromagnetism with
charge order is seen under strong electronic interaction. Our results suggest
that such charge order can be easily controlled by the magnetic field, which
possibly give rise to the giant negative magnetoresistance, and its relation to
phthalocyanine compounds is discussed.Comment: 5pages, 4figure
A new Bloch period for interacting cold atoms in 1D optical lattices
The paper studies Bloch oscillations of ultracold atoms in optical lattice in
the presence of atom-atom interaction. A new, interaction-induced Bloch period
is identified. The analytical results are corroborated by realistic numerical
calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil
Neutrino Oscillations in a Supersymmetric SO(10) Model with Type-III See-Saw Mechanism
The neutrino oscillations are studied in the framework of the minimal
supersymmetric SO(10) model with Type-III see-saw mechanism by additionally
introducing a number of SO(10) singlet neutrinos. The light Majorana neutrino
mass matrix is given by a combination of those of the singlet neutrinos and the
active neutrinos. The minimal SO(10) model gives an unambiguous Dirac
neutrino mass matrix, which enables us to predict the masses and the other
parameters for the singlet neutrinos. These predicted masses take the values
accessible and testable by near future collider experiments under the
reasonable assumptions. More comprehensive calculations on these parameters are
also given.Comment: 14 pages, 5 figures; the version to appear in JHE
Non-thermal Leptogenesis and a Prediction of Inflaton Mass in a Supersymmetric SO(10) Model
The gravitino problem gives a severe constraint on the thermal leptogenesis
scenario. This problem leads us to consider some alternatives to it if we try
to keep the gravitino mass around the weak scale GeV. We
consider, in this paper, the non-thermal leptogenesis scenario in the framework
of a minimal supersymmetric SO(10) model. Even if we start with the same
minimal SO(10) model, we have different predictions for low-energy
phenomenologies dependent on the types of seesaw mechanism. This is the case
for leptogenesis: it is shown that the type-I see-saw model gives a consistent
scenario for the non-thermal leptogenesis but not for type-II. The predicted
inflaton mass needed to produce the observed baryon asymmetry of the universe
is found to be GeV for the reheating temperature
GeV.Comment: 9 pages, 2 figures; the version to appear in JCA
Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces
A new method has been proposed to evaluate the frictional force in the
stationary state. This method is applied to the 1-dimensional model of clean
surfaces. The kinetic frictional force is seen to depend on velocity in
general, but the dependence becomes weaker as the maximum static frictional
force increases and in the limiting case the kinetic friction gets only weakly
dependent on velocity as described by one of the laws of friction. It is also
shown that there is a phase transition between state with vanishing maximum
static frictional force and that with finite one. The role of randomness at the
interface and the relation to the impurity pinning of the sliding
Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full
text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-
Ground State Spin Structure of Strongly Interacting Disordered 1D Hubbard Model
We study the influence of on-site disorder on the magnetic properties of the
ground state of the infinite U 1D Hubbard model. We find that the ground state
is not ferromagnetic. This is analyzed in terms of the algebraic structure of
the spin dependence of the Hamiltonian. A simple explanation is derived for the
1/N periodicity in the persistent current for this model.Comment: 3 pages, no figure
Sharp signature of DDW quantum critical point in the Hall coefficient of the cuprates
We study the behavior of the Hall coefficient, , in a system exhibiting
density-wave (DDW) order in a regime in which the carrier
concentration, , is tuned to approach a quantum critical point at which the
order is destroyed. At the mean-field level, we find that
evinces a sharp signature of the transition. There is a kink in
at the critical value of the carrier concentration, ; as the critical
point is approached from the ordered side, the slope of
diverges. Hall transport experiments in the cuprates, at high magnetic fields
sufficient to destroy superconductivity, should reveal this effect.Comment: 5 pages, 2 eps figure
Spin-Echo Measurements for an Anomalous Quantum Phase of 2D Helium-3
Previous heat-capacity measurements of our group had shown the possible
existence of an anomalous quantum phase containing the zero-point vacancies
(ZPVs) in 2D He. The system is monolayer He adsorbed on graphite
preplated with monolayer He at densities () just below the 4/7
commensurate phase (). We carried out
pulsed-NMR measurements in order to examine the microscopic and dynamical
nature of this phase. The measured decay of spin echo signals shows the
non-exponential behaviour. The decay curve can be fitted with the double
exponential function, but the relative intensity of the component with a longer
time constant is small (5%) and does not depend on density and temperature,
which contradicts the macroscopic fluid and 4/7 phase coexistence model. This
slowdown is likely due to the mosaic angle spread of Grafoil substrate and the
anisotropic spin-spin relaxation time in 2D systems with respect to the
magnetic field direction. The inverse value deduced from the major echo
signal with a shorter time constant, which obeys the single exponential
function, decreases linearly with decreasing density from , supporting the
ZPV model.Comment: 4 pages, 6 figure
- …