177 research outputs found

    Non deterministic Repairable Fault Trees for computing optimal repair strategy

    Get PDF
    In this paper, the Non deterministic Repairable Fault Tree (NdRFT) formalism is proposed: it allows to model failure modes of complex systems as well as their repair processes. The originality of this formalism with respect to other Fault Tree extensions is that it allows to face repair strategies optimization problems: in an NdRFT model, the decision on whether to start or not a given repair action is non deterministic, so that all the possibilities are left open. The formalism is rather powerful allowing to specify which failure events are observable, whether local repair or global repair can be applied, and the resources needed to start a repair action. The optimal repair strategy can then be computed by solving an optimization problem on a Markov Decision Process (MDP) derived from the NdRFT. A software framework is proposed in order to perform in automatic way the derivation of an MDP from a NdRFT model, and to deal with the solution of the MDP

    Computing Inferences for Large-Scale Continuous-Time Markov Chains by Combining Lumping with Imprecision

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences - here limited to determining marginal or limit expectations - becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed - smaller - state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality.Comment: 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018

    Rapidly-Disintegrating Laminar Extrudates: Preliminary Experiments upon an Age Appropriate Pediatric Formulation

    Get PDF
    The aim of the present investigation is to produce rapidly disintegrating laminar extrudates for delivering ibuprofen in the mouth of paediatric patients. This laminar shape is particularly convenient for drug delivering in the mouth and can be easily cut in cut in different sizes allowing for a convenient adjustment of the drug dose depending on the age of the patient. Due to the fact that in paediatric formulations, the selection of the excipients is always a challenging issue and the reduction of their amount is always highly desirable, in this study to select the most appropriate composition to achieve a rapid disintegration and simultaneously permit a high amount of ibuprofen in the system, an experimental design for mixtures was employed and the disintegration time in simulated saliva was used as experimental response. In addition, after solid state analyses to check possible insurgence of drug-excipients interactions, laminar extrudates were characterised in terms of mechanical properties and in vitro dissolution performances. Extrudates with the desired uniform laminar shape, constant thickness (2 mm) and a very high content of drug (82% wt) were produced. These products exhibited a short disintegration time. The dose for a patient of 6-12 years corresponded to a length of extrudate between 1-1.5 cm, perfectly compatible with a formulation orodispersible thin laminar extrudate intended for a paediatric patient (Figure 1)

    Evidence-Based Analysis of Cyber Attacks to Security Monitored Distributed Energy Resources

    Get PDF
    This work proposes an approach based on dynamic Bayesian networks to support the cybersecurity analysis of network-based controllers in distributed energy plants. We built a system model that exploits real world context information from both information and operational technology environments in the energy infrastructure, and we use it to demonstrate the value of security evidence for time-driven predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the causal and temporal dependencies involved in the assessment of security threats, and in the introduction of security analytics supporting the configuration of anomaly detection platforms for digital energy infrastructures

    Computing inferences for large-scale continuous-time Markov chains by combining lumping with imprecision

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences—here limited to determining marginal or limit expectations—becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed—smaller—state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality

    Multiple sclerosis disease: A computational approach for investigating its drug interactions

    Get PDF
    Multiple Sclerosis (MS) is a chronic and potentially highly disabling disease that can cause permanent damage and deterioration of the central nervous system. In Europe it is the leading cause of non-traumatic disabilities in young adults, since more than 700,000 EU people suffer from MS. Although recent studies on MS pathophysiology have been performed, providing interesting results, MS remains a challenging disease. In this context, thanks to recent advances in software and hardware technologies, computational models and computer simulations are becoming appealing research tools to support scientists in the study of such disease. Motivated by this consideration, we propose in this paper a new model to study the evolution of MS in silico, and the effects of the administration of the daclizumab drug, taking into account also spatiality and temporality of the involved phenomena. Moreover, we show how the intrinsic symmetries of the model we have developed can be exploited to drastically reduce the complexity of its analysis

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)
    • 

    corecore