423 research outputs found

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Impact of Rheumatic Musculoskeletal Disease on Psychological Development in Adolescents and Young Adults

    Get PDF
    Adolescents and young adults (AYAs) undergo significant physiological and psychological transformations. When developmental milestones are combined with additional challenges of growing up with a chronic rheumatic musculoskeletal disease (RMD), it can increase AYA's susceptibility to psychological problems. Emotional issues in adolescence can often persist into adulthood and negatively impact future health, social, and work outcomes. This chapter summarises psychological challenges for AYAs and recommends ways for healthcare professionals (HCPs) to promote mental wellbeing in AYAs with RMD

    How Sensory Experiences Affect Adolescents with an Autistic Spectrum Condition within the Classroom

    Get PDF
    Sensory processing difficulties are consistently reported amongst individuals with an autistic spectrum condition (ASC); these have a significant impact on daily functioning. Evidence in this area comes from observer reports and first-hand accounts; both have limitations. The current study used the Adolescent/Adult Sensory Profile (AASP; Brown and Dunn in The Adolescent/Adult Sensory Profile: self questionnaire. Pearson, 2002a), and a qualitative questionnaire to investigate sensory issues in school children with ASC. The AASP found that the participants’ mean scores were outside normal parameters. Participants reported difficulties in at least one sensory domain, with hearing affecting them the most. Content analysis revealed sensory sensitivity to affect the participant’s learning and that sensory experiences were largely negative. Results suggest that schools need to create sensory profiles for each individual with ASC

    The PedsQLâ„¢ as a patient-reported outcome in children and adolescents with Attention-Deficit/Hyperactivity Disorder: a population-based study

    Get PDF
    BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is the most common chronic mental health condition in children and adolescents. The application of health-related quality of life (HRQOL) as a pediatric population health measure may facilitate risk assessment and resource allocation, the identification of health disparities, and the determination of health outcomes from interventions and policy decisions for children and adolescents with ADHD at the local community, state, and national health level. METHODS: An analysis from an existing statewide database to determine the feasibility, reliability, and validity of the 23-item PedsQL™ 4.0 (Pediatric Quality of Life Inventory™) Generic Core Scales as a patient-reported outcome (PRO) measure of pediatric population health for children and adolescents with ADHD. The PedsQL™ 4.0 Generic Core Scales (Physical, Emotional, Social, School Functioning) were completed by families through a statewide mail survey to evaluate the HRQOL of new enrollees in the State of California State's Children's Health Insurance Program (SCHIP). Seventy-two children ages 5–16 self-reported their HRQOL. RESULTS: The PedsQL™ 4.0 evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (α = 0.92 child self-report, 0.92 parent proxy-report), and distinguished between healthy children and children with ADHD. Children with ADHD self-reported severely impaired psychosocial functioning, comparable to children with newly-diagnosed cancer and children with cerebral palsy. CONCLUSION: The results suggest that population health monitoring may identify children with ADHD at risk for adverse HRQOL. The implications of measuring pediatric HRQOL for evaluating the population health outcomes of children with ADHD internationally are discussed

    A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

    Get PDF
    [EN] Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework.This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Economic Development and Innovation (MEDI). We thank Dr. Hongying Wang for invaluable help with drug administration and animal careHassani, SA.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid-Ramírez, JS.; Van Der Meer, MA.; Tiesinga, P.... (2017). A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Scientific Reports. 7:1-19. https://doi.org/10.1038/srep40606S1197Arnsten, A. F., Wang, M. J. & Paspalas, C. D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012).Arnsten, A. F. & Dudley, A. G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 1, 2 (2005).Clark, K. L. & Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 8, 33 (2014).Wang, M. et al. Neuronal basis of age-related working memory decline. Nature 476, 210–213 (2011).Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450 (2005).Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci, 1–100, doi: 10.1017/S0140525X15000667 (2015).Amemiya, S. & Redish, A. D. Manipulating Decisiveness in Decision Making: Effects of Clonidine on Hippocampal Search Strategies. J Neurosci 36, 814–827 (2016).Doya, K. Metalearning and neuromodulation. Neural Netw 15, 495–506 (2002).Uhlen, S., Muceniece, R., Rangel, N., Tiger, G. & Wikberg, J. E. Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacology & toxicology 76, 353–364 (1995).Mao, Z. M., Arnsten, A. F. & Li, B. M. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biological psychiatry 46, 1259–1265 (1999).Arnsten, A. F. & Goldman-Rakic, P. S. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11, 583–590 (1990).Franowicz, J. S. & Arnsten, A. F. The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136, 8–14 (1998).Caetano, M. S. et al. Noradrenergic control of error perseveration in medial prefrontal cortex. Frontiers in Integrative Neuroscience 6, 125 (2012).Kim, S., Bobeica, I., Gamo, N. J., Arnsten, A. F. & Lee, D. Effects of alpha-2A adrenergic receptor agonist on time and risk preference in primates. Psychopharmacology 219, 363–375 (2012).Seu, E., Lang, A., Rivera, R. J. & Jentsch, J. D. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology 202, 505–519 (2009).Kawaura, K., Karasawa, J., Chaki, S. & Hikichi, H. Stimulation of postsynapse adrenergic alpha2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. Behav Brain Res 270, 349–356 (2014).Aoki, C., Go, C. G., Venkatesan, C. & Kurose, H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650, 181–204 (1994).Barth, A. M., Vizi, E. S., Zelles, T. & Lendvai, B. Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. J Neurophysiol 99, 394–401 (2008).Ji, X. H., Ji, J. Z., Zhang, H. & Li, B. M. Stimulation of alpha2-adrenoceptors suppresses excitatory synaptic transmission in the medial prefrontal cortex of rat. Neuropsychopharmacology 33, 2263–2271 (2008).Yi, F., Liu, S. S., Luo, F., Zhang, X. H. & Li, B. M. Signaling mechanism underlying alpha2A -adrenergic suppression of excitatory synaptic transmission in the medial prefrontal cortex of rats. Eur J Neurosci 38, 2364–2373 (2013).Engberg, G. & Eriksson, E. Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn-Schmiedeberg’s archives of pharmacology 343, 472–477 (1991).Jakala, P. et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20, 460–470 (1999).Jakala, P. et al. Guanfacine and clonidine, alpha 2-agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology 20, 119–130 (1999).Muller, U. et al. Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology 182, 205–213 (2005).Scahill, L. et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. The American journal of psychiatry 158, 1067–1074 (2001).Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19, 404–413 (2016).Stephan, K. E. et al. Computational neuroimaging strategies for single patient predictions. NeuroImage in press (2015).Arnsten, A. F., Cai, J. X. & Goldman-Rakic, P. S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8, 4287–4298 (1988).Callado, L. F. & Stamford, J. A. Alpha2A- but not alpha2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 366, 35–39 (1999).Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature reviews. Drug discovery 11, 141–168 (2012).Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J Neurosci 35, 8145–8157 (2015).Balcarras, M., Ardid, S., Kaping, D., Everling, S. & Womelsdorf, T. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness. J Cogn Neurosci 28, 333–349 (2016).Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114, 784–805 (2007).Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15, 1040–1046 (2012).O’Reilly, J. X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad Sci USA 110, 3660–3669 (2013).Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).Womelsdorf, T. & Everling, S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 38, 682–700 (2015).Yang, Y. et al. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 110, 12078–12083 (2013).Aston-Jones, G., Rajkowski, J. & Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biological psychiatry 46, 1309–1320 (1999).Cole, B. J. & Robbins, T. W. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology 7, 129–142 (1992).Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and biobehavioral reviews 28, 771–784 (2004).Devauges, V. & Sara, S. J. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res 39, 19–28 (1990).Connor, D. F., Arnsten, A. F., Pearson, G. S. & Greco, G. F. Guanfacine extended release for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. Expert opinion on pharmacotherapy 15, 1601–1610 (2014).Sallee, F. R. et al. Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 48, 155–165 (2009).Steere, J. C. & Arnsten, A. F. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111, 883–891 (1997).Doya, K. Modulators of decision making. Nat Neurosci 11, 410–416 (2008).Wang, X. J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014).Wiecki, T. V. et al. A Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS One 11, e0148409, doi: 10.1371/journal.pone.0148409 (2016).Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3, 12 (2013).Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 20, 251–256 (2010).Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20, 345–352 (2015).Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience 14, 154–162 (2011).Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational Psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry 87, 53–63 (2015).Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage 89, 171–180 (2014).Harlé, K. M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426 (2015).Zhang, J. et al. Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease. Brain 139, 161–173 (2016).Frank, M. J. et al. fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning. Journal of Neuroscience 35, 485–494 (2015).Smith, A. C. & Brown, E. N. Estimating a state-space model from point process observations. Neural Comput 15, 965–991 (2003).Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Frontiers in human neuroscience 5, 189 (2011).Rämä, P. et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacology Biochemistry and Behavior 55, 415–422 (1996).Arnsten, A. F. T. & Contant, T. A. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108, 159–169 (1992).O’Neill, J. et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sciences 67, 877–885 (2000).Wang, M., Ji, J.-Z. & Li, B.-M. The α2A-Adrenergic Agonist Guanfacine Improves Visuomotor Associative Learning in Monkeys. Neuropsychopharmacology 29, 86–92 (2004).Witte, E. a. & Marrocco, R. T. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132, 315–323 (1997).Decamp, E., Clark, K. & Schneider, J. S. Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. European Journal of Neuroscience 34, 1018–1022 (2011)

    Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

    Get PDF
    Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms

    Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions

    Get PDF
    Accurate parameterization of reference evapotranspiration ( ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, and pollution) or with under-irrigation (crop stress and suboptimal yields or quality). ET0 is often estimated using the FAO-56 method with meteorological data gathered over a reference surface, usually short grass. However, the density of suitable ET0 stations is often low relative to the microclimatic variability of many arid and semi-arid regions, leading to a potentially inaccurate ET0 for irrigation scheduling. In this study, we investigated multiple ET0 products from six meteorological stations, a satellite ET0 product, and integration (merger) of two stations’ data in Southern California, USA. We evaluated ET0 against lysimetric ET observations from two lysimeter systems (weighing and volumetric) and two crops (wine grapes and Jerusalem artichoke) by calculating crop ET ( ETc) using crop coefficients for the lysimetric crops with the different ET0. ETc calculated with ET0 products that incorporated field-specific wind speed had closer agreement with lysimetric ET, with RMSE reduced by 36 and 45% for grape and Jerusalem artichoke, respectively, with on-field anemometer data compared to wind data from the nearest station. The results indicate the potential importance of on-site meteorological sensors for ET0 parameterization; particularly where microclimates are highly variable and/or irrigation water is expensive or scarce

    Host hindrance to HIV-1 replication in monocytes and macrophages

    Get PDF
    Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types
    • …
    corecore