1,516 research outputs found

    Modulation of interferon-[alpha] secretion by activated platelets in systemic lupus erythematosus.

    Get PDF
    Type I interferons play a key role in systemic lupus erythematosus (SLE) pathogenesis as an "IFN signature" is found in the majority of patients with active SLE. Immune complexes are internalized by plasmacytoid dendritic cells (DC) via Fc-[gamma] ReceptorIIA, reach the endosomal compartment and activate IFN-[alpha] secretion through TLR7/9-dependent pathways. Naturally occurring differences in expression of the TLR7/9 gene as well as factors that modulate TLR7/9 expression, including CD154 could therefore contribute to SLE pathogenesis. Although its origin is not elucidated CD154 is hyperexpressed in SLE patients, and is important for the differentiation of autoantibody-secreting cells. We hypothesized that platelets which are an abundant source of CD154, and which can mediate proinflammatory effects could be an actor involved in SLE pathogenesis. Platelets from SLE patients are activated _in vivo_ by circulating immune complexes which are abundant in SLE sera, via a CD32-dependent mechanism. Activated platelets formed aggregates with antigen-presenting cells in SLE patients and enhanced interferon-[alpha] secretion induced by immune-complexes stimulated plasmacytoid DCs. Finally, _in vivo_ depletion of platelets and megakaryocytes in NZBxNZW(F1) lupus prone mice improved all parameters assessing disease activity, whereas transfusion of activated platelets worsened the disease course. Altogether, these data identify platelets as a mediator of SLE pathogenesis and a new therapeutical target

    The order of the quantum chromodynamics transition predicted by the standard model of particle physics

    Get PDF
    We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.Comment: 7 pages, 4 figure

    Specific heat of MgB_2 after irradiation

    Full text link
    We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH_{c2}/dT at T_c can be obtained without sacrificing more than a few degrees in T_c. The upper critical field of the sample after irradiation exceeds 28 T at T goes to 0 K.Comment: 11 pages text, 6 figures, accepted by Journal of Physics: Condensed Matte

    A functional central limit theorem for interacting particle systems on transitive graphs

    Get PDF
    Abstract A nite range interacting particle system on a transitive graph is considered. Assuming that the dynamics and the initial measure are invariant, the normalized empirical distribution process converges in distribution to a centered diusion process. As an application, a central limit theorem for certain hitting times, interpreted as failure times of a coherent system in reliability, is derived

    Baryon Washout, Electroweak Phase Transition, and Perturbation Theory

    Get PDF
    We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

    Get PDF
    Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes
    corecore