11 research outputs found

    C-H activation induced by water. Monocyclometalated to dicyclometalated: C boolean AND N boolean AND C tridentate platinum complexes

    No full text
    Metalation of 2,6-diphenylpyridine (1) by potassium tetrachloroplatinate in acetic acid gives a monocyclometalated chloride-bridged dimer 4. This dimer is split with CO to give a kinetic product 9t with the incoming CO trans to the orthometalated carbon. The kinetic product of cleavage is shown to be 16 kJ mol-1 higher in energy than the thermodynamic product 9c, which has the CO trans to the pyridine nitrogen. The isomerization of 9t to 9c is shown not to take place via an associative mechanism and, with analogue 11, is effectively suppressed when excess chloride is added, implying that it takes place via a chloride dissociation. The monocyclometalated 9 undergoes a second cyclometalation to give the C∧N∧C dicyclometalated complex 15 in high yield. This second cyclometalation is brought about by the simple expedient of adding water to the monocyclometalated precursor. The addition of water is rationalized on the basis of needing to ionize the HCl byproduct of the reaction. Using a substituted pyridine (5) analogous chemistry is observed. Single-crystal X-ray structures of one of the intermediates (6) and one of the final products (15) have been solved. Density functional theory calculations are used to rationalize the isomerizations of the monocyclometalated intermediates and the need to ionize HCl in the second cyclometalation

    Monitoring the biological aerosol

    No full text
    Aerobiological particles vary widely in size, and their deposition take place either by gravitational effect, molecular diffusion and impact on surface. This is important in studying and sampling aerosol, in cultural heritage. We describe the principal sampling equipment and the strategy of aerobiological sampling technique

    The potential for the use of agent-based models in ecotoxicology

    Get PDF
    This chapter introduces ABMs, their construction, and the pros and cons of their use. Although relatively new, agent-basedmodels (ABMs) have great potential for use in ecotoxicological research – their primary advantage being the realistic simulations that can be constructed and particularly their explicit handling of space and time in simulations. Examples are provided of their use in ecotoxicology primarily exemplified by different implementations of the ALMaSS system. These examples presented demonstrate how multiple stressors, landscape structure, details regarding toxicology, animal behavior, and socioeconomic effects can and should be taken into account when constructing simulations for risk assessment. Like ecological systems, in ABMs the behavior at the system level is not simply the mean of the component responses, but the sum of the often nonlinear interactions between components in the system; hence this modeling approach opens the door to implementing and testing much more realistic and holistic ecotoxicological models than are currently used
    corecore