16,918 research outputs found
Slow down of a globally neutral relativistic beam shearing the vacuum
The microphysics of relativistic collisionless sheared flows is investigated
in a configuration consisting of a globally neutral, relativistic beam
streaming through a hollow plasma/dielectric channel. We show through
multidimensional PIC simulations that this scenario excites the Mushroom
instability (MI), a transverse shear instability on the electron-scale, when
there is no overlap (no contact) between the beam and the walls of the
hollow plasma channel. The onset of the MI leads to the conversion of the
beam's kinetic energy into magnetic (and electric) field energy, effectively
slowing down a globally neutral body in the absence of contact. The
collisionless shear physics explored in this configuration may operate in
astrophysical environments, particularly in highly relativistic and supersonic
settings where macroscopic shear processes are stable
Improved thermal isolation of silicon suspended platforms for an all-silicon thermoelectric microgenerator based on large scale integration of Si nanowires as thermoelectric material
Special suspended micro-platforms have been designed as a part of silicon compatible planar thermoelectric microgenerators. Bottom-up grown silicon nanowires are going to bridge in the future such platforms to the surrounding silicon bulk rim. They will act as thermoelectric material thus configuring an all-silicon thermoelectric device. In the new platform design other additional bridging elements (usually auxiliary support silicon beams) are substituted by low conductance thin film dielectric membranes in order to maximize the temperature difference developed between both areas. These membranes follow a sieve-like design that allows fabricating them with a short additional wet anisotropic etch step. © Published under licence by IOP Publishing Ltd.Peer ReviewedPostprint (published version
Singular kernels, multiscale decomposition of microstructure, and dislocation models
We consider a model for dislocations in crystals introduced by Koslowski,
Cuiti\~no and Ortiz, which includes elastic interactions via a singular kernel
behaving as the norm of the slip. We obtain a sharp-interface limit
of the model within the framework of -convergence. From an analytical
point of view, our functional is a vector-valued generalization of the one
studied by Alberti, Bouchitt\'e and Seppecher to which their rearrangement
argument no longer applies. Instead we show that the microstructure must be
approximately one-dimensional on most length scales and exploit this property
to derive a sharp lower bound
Structured Deformations of Continua: Theory and Applications
The scope of this contribution is to present an overview of the theory of
structured deformations of continua, together with some applications.
Structured deformations aim at being a unified theory in which elastic and
plastic behaviours, as well as fractures and defects can be described in a
single setting. Since its introduction in the scientific community of rational
mechanicists (Del Piero-Owen, ARMA 1993), the theory has been put in the
framework of variational calculus (Choksi-Fonseca, ARMA 1997), thus allowing
for solution of problems via energy minimization. Some background, three
problems and a discussion on future directions are presented.Comment: 11 pages, 1 figure, 1 diagram. Submitted to the Proceedings volume of
the conference CoMFoS1
Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering
Twisted Laguerre-Gaussian lasers, with orbital angular momentum and
characterised by doughnut shaped intensity profiles, provide a transformative
set of tools and research directions in a growing range of fields and
applications, from super-resolution microcopy and ultra-fast optical
communications to quantum computing and astrophysics. The impact of twisted
light is widening as recent numerical calculations provided solutions to
long-standing challenges in plasma-based acceleration by allowing for high
gradient positron acceleration. The production of ultrahigh intensity twisted
laser pulses could then also have a broad influence on relativistic
laser-matter interactions. Here we show theoretically and with ab-initio
three-dimensional particle-in-cell simulations, that stimulated Raman
backscattering can generate and amplify twisted lasers to Petawatt intensities
in plasmas. This work may open new research directions in non-linear optics and
high energy density science, compact plasma based accelerators and light
sources.Comment: 18 pages, 4 figures, 1 tabl
All-optical trapping and acceleration of heavy particles
A scheme for fast, compact, and controllable acceleration of heavy particles
in vacuum is proposed, in which two counterpropagating lasers with variable
frequencies drive a beat-wave structure with variable phase velocity, thus
allowing for trapping and acceleration of heavy particles, such as ions or
muons. Fine control over the energy distribution and the total charge of the
beam is obtained via tuning of the frequency variation. The acceleration scheme
is described with a one-dimensional theory, providing the general conditions
for trapping and scaling laws for the relevant features of the particle beam.
Two-dimensional, electromagnetic particle-in-cell simulations confirm the
validity and the robustness of the physical mechanism.Comment: 10 pages, 3 figures, to appear in New Journal of Physic
- …