20 research outputs found

    Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation

    Get PDF
    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. Β© 2014 Balaban et al

    The effects of ibuprofen and the neurokinin-1 receptor antagonist GR205171A on Fos expression in the ferret trigeminal nucleus following tooth pulp stimulation.

    No full text
    We have developed a model to study central changes following inflammation of the tooth pulp in the ferret and have examined Fos expression in the trigeminal nucleus following stimulation of non-inflamed and inflamed tooth pulps. The aim of this study was to establish the ability of this model to predict analgesic efficacy in clinical studies of inflammatory pain. We addressed this by assessing the effects of the neurokinin-1 receptor antagonist GR205171A and ibuprofen on Fos expression following stimulation of the inflamed pulp and comparing this with known analgesic efficacy. Adult ferrets were prepared under anaesthesia to allow tooth pulp stimulation, recording from the digastric muscle and intravenous injections at a subsequent experiment. In some animals pulpal inflammation was induced, by introducing human caries into a deep buccal cavity. After 5 days, animals were reanaesthetised, treated with vehicle, GR205171A or ibuprofen and the teeth were stimulated at ten times the threshold of the jaw-opening reflex. Stimulation of all tooth pulps induced ipsilateral Fos in trigeminal subnuclei caudalis and oralis. GR205171A had no significant effect on Fos expression in the trigeminal nucleus of animals with either non-inflamed or inflamed tooth pulps. Ibuprofen reduced Fos expression in the trigeminal nucleus and this effect was most marked in animals with pulpal inflammation. These results differ from those previously described using a range of other animal models, but agree with known clinical efficacy of neurokinin-1 receptor antagonists and ibuprofen. Therefore this model is likely to be of use in accurately predicting the analgesic efficacy of novel compounds

    Changes in sodium channel expression following trigeminal nerve injury.

    No full text
    We have investigated the expression of TTX-sensitive (TTXs) and TTX-resistant (TTXr) sodium channel subtypes following injury to the inferior alveolar nerve (IAN), in order to determine their potential role in the development of trigeminal neuropathic pain. In seven anaesthetised ferrets, fluorogold (2%) was injected into the left IAN to identify cell bodies with axons in this nerve. In four animals, the nerve was sectioned distal to the injection site and the remaining three served as controls. After 3 days, the animals were perfused with 4% paraformaldehyde. The left and right IANs and trigeminal ganglia were processed using indirect immunofluorescence with specific primary antibodies to TTXs subtypes Na(v)1.3 and Na(v)1.7 and TTXr subtypes Na(v)1.8 and Na(v)1.9. Image analysis was used to quantify the percentage area of staining (PAS) in the nerves. In the ganglia, counts were made of positively labelled cells in the fluorogold population. PAS for Na(v)1.8 and Na(v)1.9 was significantly greater in injured nerves than in either contralateral or control nerves. After injury, significantly fewer cells in the ganglia expressed Na(v)1.3 (controls 36.9%; injured 13.1%), Na(v)1.7 (controls 17.0%; injured 8.1%) and Na(v)1.9 (controls 60.3%; injured 29.0%) (p<0.05, unpaired t test). These changes are different from those previously reported in the dorsal root ganglion following damage to peripheral nerves of spinal origin. As they occur at a time of known high abnormal neural discharge, it seems likely that changes in sodium channel expression may play a role in nerve injury-induced trigeminal pain

    nNOS expression following inferior alveolar nerve injury in the ferret.

    No full text
    Damage to the inferior alveolar nerve (IAN) may result in permanent painful dysaesthesia, and there is compelling evidence to suggest that ectopic activity from the injury site plays a crucial role in the initiation of this disorder. The aim of this study was to determine whether neuronal nitric oxide synthase (nNOS), a regulator of neuronal excitability, could be involved in the development of the abnormal activity. In seven ferrets, the left IAN was exposed and a retrograde tracer, fluorogold, was applied to the nerve for the identification of cell bodies in the trigeminal ganglion with axons in the IAN. In four animals, the nerve was sectioned distal to the injection site, and three served as controls. After 3 days, the animals were perfused with fixative, and the left and right IANs and trigeminal ganglia were processed using indirect immunofluorescence for nNOS. Image analysis was used to quantify the percentage area of staining (PAS) at the injury site. In the ganglia, counts were made of positively labelled cells in the fluorogold population. At the injury site, PAS was significantly greater in injured nerves than in either contralateral or control nerves, and contralateral PAS was elevated compared to control. In the ganglia, the proportion of nNOS-labelled cells was significantly reduced following injury. These results indicate a possible translocation of the nNOS protein from the cell body to the site of nerve injury, where it accumulates. Thus, nNOS could play a role in the development of ectopic activity at a site of trigeminal nerve injury

    The effect of inflammation on Fos expression in the ferret trigeminal nucleus.

    No full text
    We have previously carried out detailed characterization and identification of Fos expression within the trigeminal nucleus after tooth pulp stimulation in ferrets. The aim of this study was to determine the effect of pulpal inflammation on the excitability of central trigeminal neurons following tooth pulp stimulation. Adult ferrets were prepared under anesthesia to allow tooth pulp stimulation, recording from the digastric muscle, and intravenous injections at a subsequent experiment. In some animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. After 5 d, animals were re-anaethetized, and the teeth were stimulated at 10 times the threshold of the jaw-opening reflex. Stimulation of all tooth pulps induced ipsilateral Fos in the trigeminal subnuclei caudalis and oralis. All non-stimulated animals showed negligible Fos labeling, with no differences recorded between inflamed and non-inflamed groups. Following tooth pulp stimulation, Fos expression was greater in animals with inflamed teeth than in animals with non-inflamed teeth, with the greatest effect seen in the subnucleus caudalis. These results suggest that inflammation increases the number of trigeminal brainstem neurons activated by tooth pulp stimulation; this may be mediated by peripheral or central mechanisms
    corecore