3 research outputs found

    Combinations of Plant Water-Stress and Neonicotinoids Can Lead to Secondary Outbreaks of Banks Grass Mite (Oligonychus Pratensis Banks)

    Get PDF
    Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient

    Side-effects of pesticides used in the organic system of production on Apis mellifera Linnaeus, 1758

    No full text
    This study aimed to evaluate the effects of pesticides, used in the organic system, on Apis mellifera under laboratory conditions. Four multiple (0.25x, 0.5x, 1x and 2x) concentrations as recommended by they manufacturers of the following products: Rotenat CE®, Pironat®, Biopirol 7M®, Organic neem®, Natuneem® and lime sulfur were tested by topical application and ingestion. Of all the products and concentrations tested, only the lime sulfur (5000 ml 100L-1 and 10000 mL 100L-1 of water) by ingestion, and Rotenat CE® (1200ml 100L-1 of water) on topical application were considered slightly harmful for A. mellifera, as the classification of IOBC/WPRS for the laboratory tests
    corecore