10 research outputs found

    The effects of immediate vision on implicit hand maps

    Get PDF
    Perceiving the external spatial location of the limbs using position sense requires that immediate proprioceptive afferent signals be combined with a stored body model specifying the size and shape of the body. Longo and Haggard (Proc Natl Acad Sci USA 107:11727–11732, 2010) developed a method to isolate and measure this body model in the case of the hand in which participants judge the perceived location in external space of several landmarks on their occluded hand. The spatial layout of judgments of different landmarks is used to construct implicit hand maps, which can then be compared with actual hand shape. Studies using this paradigm have revealed that the body model of the hand is massively distorted, in a highly stereotyped way across individuals, with large underestimation of finger length and overestimation of hand width. Previous studies using this paradigm have allowed participants to see the locations of their judgments on the occluding board. Several previous studies have demonstrated that immediate vision, even when wholly non-informative, can alter processing of somatosensory signals and alter the reference frame in which they are localised. The present study therefore investigated whether immediate vision contributes to the distortions of implicit hand maps described previously. Participants judged the external spatial location of the tips and knuckles of their occluded left hand either while being able to see where they were pointing (as in previous studies) or while blindfolded. The characteristic distortions of implicit hand maps reported previously were clearly apparent in both conditions, demonstrating that the distortions are not an artefact of immediate vision. However, there were significant differences in the magnitude of distortions in the two conditions, suggesting that vision may modulate representations of body size and shape, even when entirely non-informative

    Heterosis as Investigated in Terms of Polyploidy and Genetic Diversity Using Designed Brassica juncea Amphiploid and Its Progenitor Diploid Species

    Get PDF
    Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11) and the corresponding progenitor genotypes of B. rapa (10×10) and B. nigra (9×9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis
    corecore