5 research outputs found

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors

    No full text
    The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3-300 microM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K(+) equilibrium potential. Accordingly, the involvement of K(+) channels was confirmed either by increasing extracellular K(+) concentration and by blockade of K(+) channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons
    corecore