137 research outputs found
A Ks-band-selected catalogue of objects in the ALHAMBRA survey
The original ALHAMBRA catalogue contained over 400,000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W)24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (=0.86) and the approximately -band selection, there is a noticeable bias against red objects at moderate redshift. We avoid this bias by creating a new catalogue selected in the band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at . We select objects using the band images, which reach an approximate AB magnitude limit . We generate masks and derive completeness functions to characterize the sample. We have tested the quality of the photometry and photometric redshifts using both internal and external checks. Our final catalogue includes sources down to , with a significant tail towards high redshift. We have checked that there is a large sample of objects with spectral energy distributions that correspond to that of massive, passively evolving galaxies at , reaching as far as . We have tested the possibility of combining our data with deep infrared observations at longer wavelengths, particularly Spitzer IRAC data
IL28B SNP rs8099917 Is Strongly Associated with Pegylated Interferon-α and Ribavirin Therapy Treatment Failure in HCV/HIV-1 Coinfected Patients
Recent genome-wide association studies report that the SNP rs8099917, located 8.9 kb upstream of the start codon of IL28B, is associated with both disease chronicity and therapeutic response to pegIFN-α and RBV in patients infected with genotype 1 HCV. To determine the effect of rs8099917 variation on the response of HCV to therapy, we genotyped this variant in a cohort of 160 HCV/HIV-1 coinfected patients in our clinic unit who received combined peg-IFN-α/RBV therapy. The rs8099917 T/G or G/G genotypes were observed in 56 patients (35%). Treatment failure occurred in 80% of G-allele carriers versus 48% of non-carriers (P<0.0001). This result reveals that the G allele was strongly associated with treatment failure in this patient cohort. Importantly, a highly significant association was found between the G-allele and response to therapy in HCV genotype 1-infected patients (P<0.0001) but not in HCV genotype 3-infected patients. Multivariate analysis (odds ratio; 95% confidence interval; P value) indicated that the rs8099917 TT genotype was a strong predictor of treatment success (5.83; 1.26–26.92; P = 0.021), independent of baseline plasma HCV-RNA load less than 500 000 IU/ml (4.85; 1.18–19.95; P = 0.025) and absence of advanced liver fibrosis (5.24; 1.20–22.91; P = 0.025). These results reveal the high prevalence of the rs8099917 G allele in HCV/HIV-1 coinfected patients as well as its strong association with treatment failure in HCV genotype 1-infected patients. rs8099917 SNP genotyping may be a valid pre-treatment predictor of which patients are likely to respond to treatment in this group of difficult-to-treat HCV/HIV-infected patients
Biorefining of wheat straw:accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment–severity equation
BACKGROUND: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. RESULTS: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. CONCLUSION: Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass
Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile
Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes
and seasonal behavior are driven by environmental and biological factors. We studied the seasonal
behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem
Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements
during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The
annual carbon balance was −53 g C m−2 in 2011 and −111 g C m−2 in 2012, showing that the ecosystem
acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this
particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa
exhibited strong seasonality with peak values recorded in the winter season (July to September), as a
result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum
carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver
of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the
ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE
components at shorter time scales.This work was funded by FONDECYT projects 1120713 and 1170429, a grant from the Inter-American Institute
for Global Change Research (IAI) [grant number CRN3056], which is supported by the US National Science
Foundation [grant number GEO-1128040], and the Spanish Ministry of Economy and Competitiveness project
GEI Spain (CGL2014-52838-C2-1-R), including ERDF founds. F. Bravo-Martínez is grateful to CONICYT for the
grants “Formación de Capital Humano Avanzado-2009′′, “Beca de Apoyo al término de la tesis doctoral-2012′′,
and CORFO INNOVA Grant N° 09CN14-5704. We thank to Enrique Pérez Sanchez-Cañete and Borja Ruíz-
Reverter for technical support. We also thank “CODELCO–División Andina” for use of the site. C. Montes
acknowledges the NASA Postdoctoral Program and to Universities Space Research Association
Taming the terminological tempest in invasion science
\ua9 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species
A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability
Corals build reefs through accretion of calcium carbonate (CaCO3) skeletons, but net reef growth also depends on bioerosion by grazers and borers and on secondary calcification by crustose coralline algae and other calcifying invertebrates. However, traditional field methods for quantifying secondary accretion and bioerosion confound both processes, do not measure them on the same time-scale, or are restricted to 2D methods. In a prior study, we compared multiple environmental drivers of net erosion using pre- and post-deployment micro-computed tomography scans (μCT; calculated as the % change in volume of experimental CaCO3 blocks) and found a shift from net accretion to net erosion with increasing ocean acidity. Here, we present a novel μCT method and detail a procedure that aligns and digitally subtracts pre- and post-deployment μCT scans and measures the simultaneous response of secondary accretion and bioerosion on blocks exposed to the same environmental variation over the same time-scale. We tested our method on a dataset from a prior study and show that it can be used to uncover information previously unattainable using traditional methods. We demonstrated that secondary accretion and bioerosion are driven by different environmental parameters, bioerosion is more sensitive to ocean acidity than secondary accretion, and net erosion is driven more by changes in bioerosion than secondary accretion
Cheek Tooth Morphology and Ancient Mitochondrial DNA of Late Pleistocene Horses from the Western Interior of North America: Implications for the Taxonomy of North American Late Pleistocene Equus
Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study
The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats
The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
- …