14 research outputs found

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    Heterogeneity of ventricular fibrillation dominant frequency during global ischemia in isolated rabbit hearts

    No full text
    Introduction: Ventricular fibrillation (VF) studies show that ECG-dominant frequency (DF) decreases as ischernia develops. This study investigates the contribution of the principle ischernic metabolic components to this decline. Methods and Results: Rabbit hearts were Langendorff-perfused at 40 mL/min with Tyrode's solution and loaded with RH237. Epicardial optical action potentials were recorded with a photodiode array (256 sites, 15 x 15 mm). After 60 seconds of VF (induced by burst pacing), global ischernia was produced by low flow (6 mL/min), or the solution changed to impose hypoxia (95 % N-2/5% CO2), low pH(o) (6.7, 80 % O-2/20% CO2), or raised [K+](o) (8 mM). DF of the optical signals was determined at each site. Conduction velocity (CV), action potential duration (APD90), effective refractory period (ERP), activation threshold, dV/dt(max) and membrane potential were measured in separate experiments during ventricular pacing. During VF, ischernia decreased DF in the left ventricle (LV) (to [58 6] %, P < 0.001), but not the right (RV) ([93 5]%). Raised [K+]o reproduced this DF pattern (LV: [67 +/- 12]%, P < 0.001; RV: [95 91%). LV DF remained elevated in hypoxia or low pH,,. During ventricular pacing, ischernia decreased CV in LV but not RV. Raised [K+](o) did not change CV in either ventricle. Ischernia and raised [K+](o) shortened APD90 without altering ERP. LV activation threshold increased in both ischernia and raised [K+](o) and was associated with diastolic depolarization and decreased dV/dt(max),Conclusions: These results suggest that during VF, decreased ECG DF in global ischemia is largely due to elevated [K+](o) affecting the activation thresholds in the LV rather than RV

    Roman impact on the landscape near castellum Fectio, The Netherlands

    Get PDF
    Castellum Fectio was one of the largest fortifications along the Limes, the northern border of the Roman Empire. The castellum, situated 5 km southeast of Utrecht, the Netherlands, was occupied from around the start of our Era to ca. A.D. 260. It was situated along a river bend of the Rhine that was cut off from the main stream during the occupation of the Roman fort. A 6 m long sediment sequence was recovered from the infill of the residual channel and pieces of Roman wall plaster, glume bases of Triticum spelta and radiocarbon dates indicate that the sediments were deposited during the period of Roman occupation. The combined palaeoecological analyses— palynological, macrobotanical, entomological and geochemical— allow a detailed reconstruction of changing environmental conditions as a consequence of the Roman occupation. The pollen record reveals a dramatic decrease in arboreal pollen, suggesting that the Romans were involved in large-scale deforestation, transforming semiopen parkland to a landscape of meadows and agricultural fields. Non-pollen palynomorphs, botanical macrofossils and insect remains support this conclusion. The recorded mycoflora shows a shift from assemblages characterised by the tree pathogen Kretzschmaria deusta to assemblages dominated by spores of fungi associated with herbaceous plants, concurrent with the decrease in arboreal pollen. The presence of masticated bran fragments of cereals, clover remains, eggs of intestinal parasites and entomological and geochemical data in the upper part of the sequence indicates that these sediments largely consist of faeces that were dumped into the former channel. Surprisingly, seeds of salt tolerant species are encountered in the sediments of this inland site, which was situated outside the influence of the sea. Horses may have brought these seeds to Fectio in their intestinal tracts after grazing in coastal meadows

    Star Formation with ALMA

    No full text
    Stars are believed to form from interstellar material through the gravitational collapse of dusty clouds. Interstellar medium is a very dynamical environment in which clouds of atomic gas (and its associated dust counterpart) form in warm medium fragments, perhaps as a result of turbulence or the passage of shock, and subsequently cool down and condense. Although the dust is a tiny fraction (of order 1%) of the total material mass, it plays a major role in the cloud evolution because its opacity can shield the cloud center from the interstellar UV field and dust surfaces act as a catalyst on which molecular hydrogen can form. For high enough column density, the combined effect of dust shielding and self-shielding of H 22 turn the initially predominantly atomic gas into molecular form. H 22 forms first, but more and more complex species such as CO, CN, and HCN, form during cloud evolution

    Acid-Base Catalysis of Hydrogen Exchange

    No full text

    The Biology of Aging: Role in Cancer, Metabolic Dysfunction, and Health Disparities

    No full text

    Reversible Blocking of Amino and Carboxyl Groups

    No full text
    corecore