45 research outputs found

    Early onset of hypertension and serum electrolyte changes as potential predictive factors of activity in advanced hcc patients treated with sorafenib: results from a retrospective analysis of the HCC-AVR group

    Get PDF
    Hypertension (HTN) is frequently associated with the use of angiogenesis inhibitors targeting the vascular endothelial growth factor pathway and appears to be a generalized effect of this class of agent. We investigated the phenomenon in 61 patients with advanced hepatocellular carcinoma (HCC) receiving sorafenib. Blood pressure and plasma electrolytes were measured on days 1 and 15 of the treatment. Patients with sorafenib-induced HTN had a better outcome than those without HTN (disease control rate: 63.4% vs. 17.2% (p=0.001); progression-free survival 6.0 months (95% CI 3.2-10.1) vs. 2.5 months (95% CI 1.9-2.6) (p<0.001) and overall survival 14.6 months (95% CI9.7-19.0) vs. 3.9 months (95% CI 3.1-8.7) (p=0.003). Sodium levels were generally higher on day 15 than at baseline (+2.38, p<0.0001) in the group of responders (+4.95, p <0.0001) compared to patients who progressed (PD) (+0.28, p=0.607). In contrast, potassium was lower on day 14 (-0.30, p=0.0008) in the responder group (-0.58, p=0.003) than in those with progressive disease (-0.06, p=0.500). The early onset of hypertension is associated with improved clinical outcome in HCC patients treated with sorafenib. Our data are suggestive of an activation of the renin-angiotensin system in patients with advanced disease who developed HTN during sorafenib treatmen

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells

    Get PDF
    Magnetic resonance spectroscopy is increasingly used as a non-invasive method to investigate apoptosis. Apoptosis was induced in Jurkat T-cells by Fas mAb. 1H magnetic resonance spectra of live cells showed an increase in methylene signal as well as methylene/methyl ratio of fatty acid side chains at 5 and 24 h following induction of apoptosis. To explain this observation, 1H magnetic resonance spectra of cell extracts were investigated. These demonstrated a 70.0±7.0%, 114.0±8.0% and 90.0±5.0% increase in the concentration of triacylglycerols following 3, 5 and 7 h of Fas mAb treatment (P<0.05). Confocal microscopy images of cells stained with the lipophilic dye Nile Red demonstrated the presence of lipid droplets in the cell cytoplasm. Quantification of the stained lipids by flow cytometry showed a good correlation with the magnetic resonance results (P⩾0.05 at 3, 5 and 7 h). 31P magnetic resonance spectra showed a drop in phosphatidylcholine content of apoptosing cells, indicating that alteration in phosphatidylcholine metabolism could be the source of triacylglycerol accumulation during apoptosis. In summary, apoptosis is associated with an early accumulation of mobile triacylglycerols mostly in the form of cytoplasmic lipid droplets. This is reflected in an increase in the methylene/methyl ratio which could be detected by magnetic resonance spectroscopy

    Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a1H NMR study

    Get PDF
    Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39±11 nmol/106 cells). 13C NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances from other metabolites: glutathione (up to 30 nmol/106 cells) and myo-inositol (up to 50 nmol/106 cells). Biochemical and biological functions are suggested for these compounds in human ovarian carcinoma cells, especially in relation to their possible role in cell detoxification mechanisms during tumour progression

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    Get PDF
    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC

    Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies

    Full text link
    [EN] Quantitative multinuclear high-resolution magic angle spinning (HRMAS) was performed in order to determine the tissue pH values of and the absolute metabolite concentrations in 33 samples of human brain tumour tissue. Metabolite concentrations were quantified by 1D 1 H and 31P HRMAS using the electronic reference to in vivo concentrations (ERETIC) synthetic signal. 1 H–1 H homonuclear and 1 H–31P heteronuclear correlation experiments enabled the direct assessment of the 1 H–31P spin systems for signals that suffered from overlapping in the 1D 1 H spectra, and linked the information present in the 1D 1 H and 31P spectra. Afterwards, the main histological features were determined, and high heterogeneity in the tumour content, necrotic content and nonaffected tissue content was observed. The metabolite profiles obtained by HRMAS showed characteristics typical of tumour tissues: rather low levels of energetic molecules and increased concentrations of protective metabolites. Nevertheless, these characteristics were more strongly correlated with the total amount of living tissue than with the tumour cell contents of the samples alone, which could indicate that the sampling conditions make a significant contribution aside from the effect of tumour development in vivo. The use of methylene diphosphonic acid as a chemical shift and concentration reference for the 31P HRMAS spectra of tissues presented important drawbacks due to its interaction with the tissue. Moreover, the pH data obtained from 31P HRMAS enabled us to establish a correlation between the pH and the distance between the N(CH3)3 signals of phosphocholine and choline in 1 H spectra of the tissue in these tumour samples.The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge Martial Piotto (Bruker BioSpin, France) for providing the ERETIC synthetic signal. Furthermore, they acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.'s VI Framework Programme via the project "Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data" (FP6-2002-LSH 503094). CIBER-BBN is an initiative funded by the VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Esteve Moya, V.; Celda, B.; Martínez Bisbal, MC. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry. 403:2611-2625. https://doi.org/10.1007/s00216-012-6001-zS26112625403Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Cancer Res 58:1825–1832Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Magn Reson Med 60:1237–1242Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Juul R, Torp SH, Lundgren S, Gribbestad IS (2008) NMR Biomed 21:175–185Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) NMR Biomed 17:191–205Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer IJ (2008) Magn Reson Med 59:959–965Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC (2009) Mol Cancer 8:6Martinez-Bisbal MC, Monleon D, Assemat O, Piotto M, Piquer J, Llacer JL, Celda B (2009) NMR Biomed 22:199–206Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B (2006) NMR Biomed 19:90–100Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) Radiology 174:401–409Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD Jr, Bluml S (2005) Magn Reson Med 53:22–29Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) NMR Biomed 23:968–976Podo F (1999) NMR Biomed 12:413–439Griffiths JR, Cady E, Edwards RH, McCready VR, Wilkie DR, Wiltshaw E (1983) Lancet 1:1435–1436Robitaille PL, Robitaille PA, Gordon Brown G, Brown GG (1991) J Magn Reson 92:73–84, 1969Griffiths JR (1991) Br J Cancer 64:425–427Payne GS, Troy H, Vaidya SJ, Griffiths JR, Leach MO, Chung YL (2006) NMR Biomed 19:593–598De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, deSouza NM (2009) NMR Biomed 22:191–198Wang Y, Cloarec O, Tang H, Lindon JC, Holmes E, Kochhar S, Nicholson JK (2008) Anal Chem 80:1058–1066Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) NMR Biomed 14:307–317Srivastava NK, Pradhan S, Gowda GA, Kumar R (2010) NMR Biomed 23:113–122Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Magn Reson Med 61:525–532Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) J Oncol 2011:174019Bourne R, Dzendrowskyj T, Mountford C (2003) NMR Biomed 16:96–101Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) J Biomed Biotechnol 2011:763684, Epub 2010 Sep 5Celda B, Montelione GT (1993) J Magn Reson B 101:189–193Esteve V, Celda B (2008) Magn Reson Mater Phys MAGMA 21:484–484Collins TJ (2007) Biotechniques 43:25–30Govindaraju V, Young K, Maudsley AA (2000) NMR Biomed 13:129–153Fan TW-M (1996) Prog Nucl Magn Reson Spectrosc 28:161–219Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) Nucleic Acids Res 36:D402–D408Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) J Lipid Res 34:1009–1019Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR Biomed 21:272–288Daykin CA, Corcoran O, Hansen SH, Bjornsdottir I, Cornett C, Connor SC, Lindon JC, Nicholson JK (2001) Anal Chem 73:1084–1090Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Cancer Res 63:3195–3201Petroff OAC, Prichard JW (1995) In: Kraicer J, Dixon SJ (eds) Methods in neurosciences. Academic, San DiegoBarton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Anthony Bell B, Griffiths J (1999) Magn Reson Mater Phys Biol Med 8:121–128Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) NMR Biomed 15:327–337Coen M, Hong YS, Cloarec O, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK (2007) Anal Chem 79:8956–8966Russell D, Rubinstein LJ (1998) Russel and Rubinstein's pathology of tumors of the nervous system. Arnold, LondonTynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112Kjaergaard M, Brander S, Poulsen F (2011) J Biomol NMR 49:139–149Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) Anal Bioanal Chem 399:987–999Chadzynski GL, Bender B, Groeger A, Erb M, Klose U (2011) J Magn Reson 212:55–63Weljie AM, Jirik FR (2011) Int J Biochem Cell Biol 43:981–989Barba I, Cabanas ME, Arus C (1999) Cancer Res 59:1861–1868Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) NMR Biomed 22:272–279Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) NMR Biomed 21:677–685Schmitz JE, Kettunen MI, Hu D, Brindle KM (2005) Magn Reson Med 54:43–50Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM (2010) Chem Rev 110:3043–3059Hertz L (2008) Neuropharmacology 55:289–309Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Br J Pharmacol 161:1806–181

    Ibero-American Consensus on Low- and No-Calorie Sweeteners: Safety, Nutritional Aspects and Benefits in Food and Beverages

    Get PDF
    International scientific experts in food, nutrition, dietetics, endocrinology, physical activity, paediatrics, nursing, toxicology and public health met in Lisbon on 2-4 July 2017 to develop a Consensus on the use of low- and no-calorie sweeteners (LNCS) as substitutes for sugars and other caloric sweeteners. LNCS are food additives that are broadly used as sugar substitutes to sweeten foods and beverages with the addition of fewer or no calories. They are also used in medicines, health-care products, such as toothpaste, and food supplements. The goal of this Consensus was to provide a useful, evidence-based, point of reference to assist in efforts to reduce free sugars consumption in line with current international public health recommendations. Participating experts in the Lisbon Consensus analysed and evaluated the evidence in relation to the role of LNCS in food safety, their regulation and the nutritional and dietary aspects of their use in foods and beverages. The conclusions of this Consensus were: (1) LNCS are some of the most extensively evaluated dietary constituents, and their safety has been reviewed and confirmed by regulatory bodies globally including the World Health Organisation, the US Food and Drug Administration and the European Food Safety Authority; (2) Consumer education, which is based on the most robust scientific evidence and regulatory processes, on the use of products containing LNCS should be strengthened in a comprehensive and objective way; (3) The use of LNCS in weight reduction programmes that involve replacing caloric sweeteners with LNCS in the context of structured diet plans may favour sustainable weight reduction. Furthermore, their use in diabetes management programmes may contribute to a better glycaemic control in patients, albeit with modest results. LNCS also provide dental health benefits when used in place of free sugars; (4) It is proposed that foods and beverages with LNCS could be included in dietary guidelines as alternative options to products sweetened with free sugars; (5) Continued education of health professionals is required, since they are a key source of information on issues related to food and health for both the general population and patients. With this in mind, the publication of position statements and consensus documents in the academic literature are extremely desirable

    Head and neck cancer surgery during the COVID-19 pandemic: An international, multicenter, observational cohort study

    Get PDF
    Background: The aims of this study were to provide data on the safety of head and neck cancer surgery currently being undertaken during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This international, observational cohort study comprised 1137 consecutive patients with head and neck cancer undergoing primary surgery with curative intent in 26 countries. Factors associated with severe pulmonary complications in COVID-19–positive patients and infections in the surgical team were determined by univariate analysis. Results: Among the 1137 patients, the commonest sites were the oral cavity (38%) and the thyroid (21%). For oropharynx and larynx tumors, nonsurgical therapy was favored in most cases. There was evidence of surgical de-escalation of neck management and reconstruction. Overall 30-day mortality was 1.2%. Twenty-nine patients (3%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 30 days of surgery; 13 of these patients (44.8%) developed severe respiratory complications, and 3.51 (10.3%) died. There were significant correlations with an advanced tumor stage and admission to critical care. Members of the surgical team tested positive within 30 days of surgery in 40 cases (3%). There were significant associations with operations in which the patients also tested positive for SARS-CoV-2 within 30 days, with a high community incidence of SARS-CoV-2, with screened patients, with oral tumor sites, and with tracheostomy. Conclusions: Head and neck cancer surgery in the COVID-19 era appears safe even when surgery is prolonged and complex. The overlap in COVID-19 between patients and members of the surgical team raises the suspicion of failures in cross-infection measures or the use of personal protective equipment. Lay Summary: Head and neck surgery is safe for patients during the coronavirus disease 2019 pandemic even when it is lengthy and complex. This is significant because concerns over patient safety raised in many guidelines appear not to be reflected by outcomes, even for those who have other serious illnesses or require complex reconstructions. Patients subjected to suboptimal or nonstandard treatments should be carefully followed up to optimize their cancer outcomes. The overlap between patients and surgeons testing positive for severe acute respiratory syndrome coronavirus 2 is notable and emphasizes the need for fastidious cross-infection controls and effective personal protective equipment
    corecore