519 research outputs found

    Características de fibra e fio do algodoeiro BRS 200 marrom sob condições de diferentes lâminas de irrigação e doses de regulador de crescimento.

    Get PDF
    O experimento foi conduzido na estação experimental da Embrapa Algodão em Barbalha ? Ceara, no período de agosto a novembro de 2003, objetivando estudar as características de fibra e fio do algodoeiro BRS 200 Marrom submetidas a condições de diferentes lâminas de irrigação e doses de regulador de crescimento. O delineamento foi em blocos ao acaso, num arranjo fatorial 5 x 4, com 4 repetições. Os fatores estudados foram quatro doses de regulador de crescimento (0,0 1,0 1,5 2,0, L/ha) e cinco lâminas de irrigação (125,30; 298,35; 353,89; 521,86 e 741,64 mm). O plantio foi conduzido em fileiras duplas (1,80 m x 0,45 m x 0,20 m). As avaliações realizadas consistiram nas características de fibra e fio: maturidade, uniformidade, resistência e comprimento. As características de fibra e fio foram influenciadas pelas lâminas de irrigação, enquanto o regulador de crescimento não influenciou. Apesar das diferenças significativas entre as variáveis da característica intrínsecas da fibra e fio, obteve-se resultados satisfatório onde todas as características avaliadas estão dentro dos padrões exigidos pela moderna industria têxtil

    Xanthenones: Calixarenes-catalyzed Syntheses, Anticancer Activity And Qsar Studies

    Get PDF
    An efficient method is proposed for obtaining tetrahydrobenzo[a]xanthene-11-ones and tetrahydro-[1,3]-dioxolo[4,5-b]xanthen-9-ones. The method is based on the use of p-sulfonic acid calix[n]arenes as catalysts under solvent-free conditions. The antiproliferative activity of fifty-nine xanthenones against six human cancer cells was studied. The capacity of all compounds to inhibit cancer cell growth was dependent on the histological origin of the cells. QSAR studies indicate that among compounds derived from β-naphthol the most efficient compounds against glioma (U251) and renal (NCI-H460) cancer cells are those having higher hydrogen bonding donor ability.131132803287Lozano, R., Naghavi, M., Foreman, K., (2013) Lancet, 380, pp. 2095-2128Nakash, O., Levav, I., Aguilar-Gaxiola, S., (2014) Psychooncology, 23, pp. 40-51Chabner, B.A., Roberts, J.T.G., (2005) Nat. Rev. Cancer, 5, pp. 65-72Lambert, R.W., Martin, J.A., Merrett, J.H., Parkes, K.E.B., Thomas, G.J., (1997) CT Int. ApplPoupelin, J.P., Saint-Rut, G., Fussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., Lakroix, R., (1978) Eur. J. Med. Chem., 13, pp. 67-71Kumar, A., Sharma, S., Maurya, R.A., Sarkar, J., (2010) J. Comb. Chem., 12, pp. 20-24Hideo, T., Teruomi, J., (1981) Jpn. Patent, p. 56.005.480Banerjee, A., Mukherjee, A.K., (1981) Biotech. Histochem., 56, pp. 83-85Knight, C.G., Stephens, T., (1989) Biochem. J., 258, pp. 683-689Sirkencioglu, O., Talinli, N., Akar, A.J., (1995) Chem. Res., 12, p. 502Ion, R.M., Planner, A., Wiktorowicz, K., Frackowiak, D., (1998) Acta Biochim. Pol., 45, pp. 833-845Heravi, M.M., Alinejhad, H., Bakhtiari, K., Saeedi, M., Oskooie, H.A., Bamoharram, F.F., (2011) Bull. Chem. Soc. Ethiop., 25, pp. 399-406Khurana, J.M., Magoo, D.P., (2009) Tetrahedron Lett., 50, pp. 4777-4780Zhang, Z.-H., Wang, H.-J., Ren, X.-Q., Zhang, Y.-Y., (2009) Monatsh. Chem., 140, pp. 1481-1483Simões, J.B., Da Silva, D.L., De Fátima, A., Fernandes, S.A., (2012) Curr. Org. Chem., 16, pp. 949-971De Fátima, A., Fernandes, S.A., Sabino, A.A., (2009) Curr. Drug Discovery Technol., 6, pp. 151-170Varejão, E.V.V., De Fátima, A., Fernandes, S.A., (2013) Curr. Pharm. Des., 19, pp. 6507-6521Jose, P., Menon, S., (2007) Bioinorg. Chem. Appl., 28, pp. 1-16Da Silva, D.L., Fernandes, S.A., Sabino, A.A., De Fátima, A., (2011) Tetrahedron Lett., 52, pp. 6328-6330Simões, J.B., De Fátima, A., Sabino, A.A., Aquino, F.J.T., Da Silva, D.L., Barbosa, L.C.A., Fernandes, S.A., (2013) Org. Biomol. Chem., 11, pp. 5069-5073Simões, J.B., De Fátima, A., Sabino, A.A., Barbosa, L.C.A., Fernandes, S.A., (2014) RSC Adv., 4, pp. 18612-18615Shimizu, S., Shimada, N., Sasaki, Y., (2006) Green Chem., 8, pp. 608-614Fernandes, S.A., Natalino, R., Gazolla, P.A.R., Da Silva, M.J., Jham, G.N., (2012) Tetrahedron Lett., 53, pp. 1630-1633Monks, A., Scudeiro, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M.J., (1991) J. Natl. Cancer Inst., 83, pp. 757-766Xia, B., Ma, W., Zheng, B., Zhang, X., Fan, B., (2008) Eur. J. Med. Chem., 43, pp. 1489-1498Stanton, D.T., Jurs, P.C., (1990) Anal. Chem., 62, p. 2323Stanton, D.T., Egolf, L.M., Jurs, P.C., Hicks, M.G., (1992) J. Chem. Inf. Comput. Sci., 32, p. 306Gutsche, C.D., Dhawan, B., No, K.H., Muthukrishnan, R., (1981) J. Am. Chem. Soc., 103, pp. 3782-3792Casnati, A., Ca, N.D., Sansone, F., Ugozzoli, F., Ungaro, R., (2004) Tetrahedron, 60, pp. 7869-7876Shinkai, S., Araki, K., Tsubaki, T., Some, T., Manabe, O., (1987) J. Chem. Soc., Perkin Trans. 1, pp. 2297-2299Da Silva, D.L., Reis, F.S., Muniz, D.R., Ruiz, A.L.T.G., De Carvalho, J.E., Sabino, A.A., Modolo, L.V., De Fátima, A., (2012) Bioorg. Med.Chem., 20, pp. 2645-2650Pacheco, S.R., Braga, T.C., Da Silva, D.L., Horta, L.P., Reis, F.S., Ruiz, A.L.T.G., De Carvalho, J.E., De Fátima, A., (2013) Med. Chem., 9, pp. 889-896Spartan'06, , Wavefunction, Inc., Irvine, CAStewart, J.J.P., (2007) MOPAC 2007, version 7, , 290 W Stewart Computational Chemistry, Colorado Springs, CODewar, M.J.S., Zoebisch, E.G., Healy, E.F., (1985) J. Am. Chem. Soc., 107, pp. 3902-3909Jensen, F., (2007) Introduction to computational chemistry, , John Wiley & Son Ltd, 2nd ednKatritsky, A.R., Lobanov, V.S., Karelson, M., (1996) CODESSA: Reference ManualVersion 2, , University of Florid

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Overview of the JET ITER-like wall divertor

    Get PDF

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF

    Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data

    Get PDF
    corecore