9,160 research outputs found
Quantifying Functional Reuse from Object Oriented Requirements Specifications
Software reuse is essential in improving efficiency and productivity in the software development process. This paper analyses reuse within requirements engineering phase by taking and adapting a standard functional size measurement method, COSMIC FFP. Our proposal attempts to quantify reusability from Object Oriented requirements specifications by identifying potential primitives with a high level of reusability and applying a reuse indicator. These requirements are specified using OO-Method, an automatic software production method based on transformation models. We illustrate the application of our proposal in a Car Rental real system
Extended WKB method, resonances and supersymmetric radial barriers
Semiclassical approximations are implemented in the calculation of position
and width of low energy resonances for radial barriers. The numerical
integrations are delimited by t/T<<8, with t the period of a classical particle
in the barrier trap and T the resonance lifetime. These energies are used in
the construction of `haired' short range potentials as the supersymmetric
partners of a given radial barrier. The new potentials could be useful in the
study of the transient phenomena which give rise to the Moshinsky's diffraction
in time.Comment: 12 pages, 4 figures, 3 table
A Case Study on Artefact-based RE Improvement in Practice
Most requirements engineering (RE) process improvement approaches are
solution-driven and activity-based. They focus on the assessment of the RE of a
company against an external norm of best practices. A consequence is that
practitioners often have to rely on an improvement approach that skips a
profound problem analysis and that results in an RE approach that might be
alien to the organisational needs. In recent years, we have developed an RE
improvement approach (called \emph{ArtREPI}) that guides a holistic RE
improvement against individual goals of a company putting primary attention to
the quality of the artefacts. In this paper, we aim at exploring ArtREPI's
benefits and limitations. We contribute an industrial evaluation of ArtREPI by
relying on a case study research. Our results suggest that ArtREPI is
well-suited for the establishment of an RE that reflects a specific
organisational culture but to some extent at the cost of efficiency resulting
from intensive discussions on a terminology that suits all involved
stakeholders. Our results reveal first benefits and limitations, but we can
also conclude the need of longitudinal and independent investigations for which
we herewith lay the foundation
Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum
The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is
revisited in the context of canonical raising and lowering operators. The
Hamiltonian is then factorized in terms of two not mutually adjoint factorizing
operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The
set of eigenvalues of this new Hamiltonian is exactly the same as the energy
spectrum of the radial oscillator and the new square-integrable eigenfunctions
are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure
Quantum mechanical spectral engineering by scaling intertwining
Using the concept of spectral engineering we explore the possibilities of
building potentials with prescribed spectra offered by a modified intertwining
technique involving operators which are the product of a standard first-order
intertwiner and a unitary scaling. In the same context we study the iterations
of such transformations finding that the scaling intertwining provides a
different and richer mechanism in designing quantum spectra with respect to
that given by the standard intertwiningComment: 8 twocolumn pages, 5 figure
Partially ordered models
We provide a formal definition and study the basic properties of partially
ordered chains (POC). These systems were proposed to model textures in image
processing and to represent independence relations between random variables in
statistics (in the later case they are known as Bayesian networks). Our chains
are a generalization of probabilistic cellular automata (PCA) and their theory
has features intermediate between that of discrete-time processes and the
theory of statistical mechanical lattice fields. Its proper definition is based
on the notion of partially ordered specification (POS), in close analogy to the
theory of Gibbs measure. This paper contains two types of results. First, we
present the basic elements of the general theory of POCs: basic geometrical
issues, definition in terms of conditional probability kernels, extremal
decomposition, extremality and triviality, reconstruction starting from
single-site kernels, relations between POM and Gibbs fields. Second, we prove
three uniqueness criteria that correspond to the criteria known as bounded
uniformity, Dobrushin and disagreement percolation in the theory of Gibbs
measures.Comment: 54 pages, 11 figures, 6 simulations. Submited to Journal of Stat.
Phy
Optical potentials using resonance states in Supersymmetric Quantum Mechanics
Complex potentials are constructed as Darboux-deformations of short range,
radial nonsingular potentials. They behave as optical devices which both
refracts and absorbs light waves. The deformation preserves the initial
spectrum of energies and it is implemented by means of a Gamow-Siegert function
(resonance state). As straightforward example, the method is applied to the
radial square well. Analytical derivations of the involved resonances show that
they are `quantized' while the corresponding wave-functions are shown to behave
as bounded states under the broken of parity symmetry of the related
one-dimensional problem.Comment: 16 pages, 6 figures, 1 tabl
Assessment of fissionable material behaviour in fission chambers
A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module.
In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation
The structure of the South-Central-Pyrenean fold and thrust belt as constrained by subsurface data
The interpretation of the available seismic lines of the South-Central-Pyrenean fold and thrust belt, conveniently tied with the exploration wells, define the main structural features of this realm of the Pyrenees. In particular, they define the geometry and areal extension of the autochthonous foreland underneath the sole thrust. The mapping ofseveral selected structural lines brings constraints for the structural interpretation of the South-Central Pyrenees, including the cut-off lines between selected stratigraphic horizons of the autochthonous foreland and the branch line between basement-involved thrust sheets and the sole thrust. The thrust salient which characterizes at surface the geometry of the South-Pyrenean fold and thrust belt contrasts with the linear trend of these structural lines at subsurface. This salient has been the result of a secondary progressive curvature developed since Middle Eocene times by thrust displacement gradients during verthrusting of the South-Pyrenean thrust sheets above a Paleogene autochthonous sequence. Displacement gradients resulted from the uneven distribution of weak salt layers, mostly the Triassic and the Upper Eocene ones. The minimum amount of South-directed displacement from early MiddleEocene times to Late Oligocene is 52km, which would be significantly higher if internal shortening by folding and cleavage/fracture development as well as hanging-wall erosion is added
Exactly Solvable Hydrogen-like Potentials and Factorization Method
A set of factorization energies is introduced, giving rise to a
generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for
the radial hydrogen-like Hamiltonian. An algebraic intertwining technique
involving such factorization energies leads to derive -parametric families
of potentials in general almost-isospectral to the hydrogen-like radial
Hamiltonians. The construction of SUSY partner Hamiltonians with ground state
energies greater than the corresponding ground state energy of the initial
Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added.
To be published in J. Phys. A: Math. Gen. (1998
- …