28,817 research outputs found

    Natural and laser-induced cavitation in corn stems: On the mechanisms of acoustic emissions

    Get PDF
    Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. We report the measurement of ultrasonic acoustic emissions (UAE) produced by natural and induced cavitation in corn stems. We induced cavitation and UAE in vivo, in well controlled and reproducible experiments, by irradiating the bare stem of the plants with a continuous-wave laser beam. By tracing the source of UAE, we were able to detect absorption and frequency filtering of the UAE propagating through the stem. This technique allows the unique possibility of studying localized embolism of plant conduits, and thus to test hypotheses on the hydraulic architecture of plants. Based on our results, we postulate that the source of UAE is a transient "cavity oscillation" triggered by the disruptive effect of cavitation inception.Comment: 8 pages, 5 figure

    In-gap impurity states as the hallmark of the Quantum Spin Hall phase

    Get PDF
    We study the different response to an impurity of the two topologically different phases shown by a two dimensional insulator with time reversal symmetry, namely, the Quantum Spin Hall and the normal phase. We consider the case of graphene as a toy model that features the two phases driven, respectively, by intrinsic spin-orbit coupling and inversion symmetry breaking. We find that strictly normalizable in-gap impurity states only occur in the Quantum Spin Hall phase and carry dissipationless current whose quirality is determined by the spin and pseudospin of the residing electron. Our results imply that topological order can be unveiled by local probes of defect states.Comment: 5 pages, 3 figure

    X-ray burst induced spectral variability in 4U 1728-34

    Full text link
    Aims. INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time INTEGRAL has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, a.k.a. "the slow burster". Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range. Methods. We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments. Results. We constructed a hardness intensity diagram to track spectral state variations. In the soft state the energy spectra are characterized by two thermal components - likely from the accretion disc and the boundary/spreading layer - together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the 40 to 80 keV range. In the hard state the source is detected up to 200 keV and the spectrum can be described by a thermal Comptonization model plus an additional component: either a powerlaw tail or reflection. By stacking 123 X-ray bursts in the hard state, we detect emission up to 80 keV during the X-ray bursts. We find that during the bursts the emission above 40 keV decreases by a factor of about three with respect to the persistent emission level. Conclusions. Our results suggest that the enhanced X-ray burst emission changes the spectral properties of the accretion disc in the hard state. The likely cause is an X-ray burst induced cooling of the electrons in the inner hot flow near the neutron star.Comment: 7 pages, 5 figures, Accepted for publication in A&

    Single exciton spectroscopy of semimagnetic quantum dots

    Get PDF
    A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is considered. The effects of spin-exciton interactions and the resulting multi-spin correlations on the photoluminescence are calculated by numerical diagonalization of the Hamiltonian, including exchange interaction between electrons, holes and Mn spins, as well as spin-orbit interaction. The results provide a unified description of recent experiments of photoluminesnce of dots with one and many Mn atoms as well as optically induced ferromagnetism in semimagnetic nanocrystals.Comment: 5 pages, 3 figure

    Single-photon exchange interaction in a semiconductor microcavity

    Get PDF
    We consider the effective coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins and excitons are treated quantum mechanically shows that {\it a single polariton} induces a sizable indirect exchange interaction between otherwise independent spins. The origin, symmetry properties and the intensity of that interaction depend both on the dot-cavity coupling and detuning. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling mediated by a single photon survives above 1 K whereas the exciton mediated coupling survives at 15 K.Comment: 4 pages, 3 figure

    De retibus socialibus et legibus momenti

    Get PDF
    Online Social Networks (OSNs) are a cutting edge topic. Almost everybody --users, marketers, brands, companies, and researchers-- is approaching OSNs to better understand them and take advantage of their benefits. Maybe one of the key concepts underlying OSNs is that of influence which is highly related, although not entirely identical, to those of popularity and centrality. Influence is, according to Merriam-Webster, "the capacity of causing an effect in indirect or intangible ways". Hence, in the context of OSNs, it has been proposed to analyze the clicks received by promoted URLs in order to check for any positive correlation between the number of visits and different "influence" scores. Such an evaluation methodology is used in this paper to compare a number of those techniques with a new method firstly described here. That new method is a simple and rather elegant solution which tackles with influence in OSNs by applying a physical metaphor.Comment: Changes made for third revision: Brief description of the dataset employed added to Introduction. Minor changes to the description of preparation of the bit.ly datasets. Minor changes to the captions of Tables 1 and 3. Brief addition in the Conclusions section (future line of work added). Added references 16 and 18. Some typos and grammar polishe

    Phase diagram of an extended Agassi model

    Get PDF
    Background: The Agassi model is an extension of the Lipkin-Meshkov-Glick model that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960's by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.Comment: Accepted for publication in PR

    An extended Agassi model: algebraic structure, phase diagram, and large size limit

    Get PDF
    The Agassi model is a schematic two-level model that involves pairing and monopole-monopole interactions. It is, therefore, an extension of the well known Lipkin-Meshkov-Glick (LMG) model. In this paper we review the algebraic formulation of an extension of the Agassi model as well as its bosonic realization through the Schwinger representation. Moreover, a mean-field approximation for the model is presented and its phase diagram discussed. Finally, a 1/j1/j analysis, with jj proportional to the degeneracy of each level, is worked out to obtain the thermodynamic limit of the ground state energy and some order parameters from the exact Hamiltonian diagonalization for finitej-j.Comment: Accepted in Physica Scripta. Focus on SSNET 201
    corecore