678 research outputs found

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models

    Get PDF
    The observed trend towards warmer and drier conditions in southern Europe is projected to continue in the next decades, possibly leading to increased risk of large fires. However, an assessment of climate change impacts on fires at and above the 1.5 °C Paris target is still missing. Here, we estimate future summer burned area in Mediterranean Europe under 1.5, 2, and 3 °C global warming scenarios, accounting for possible modifications of climate-fire relationships under changed climatic conditions owing to productivity alterations. We found that such modifications could be beneficial, roughly halving the fire-intensifying signals. In any case, the burned area is robustly projected to increase. The higher the warming level is, the larger is the increase of burned area, ranging from ~40% to ~100% across the scenarios. Our results indicate that significant benefits would be obtained if warming were limited to well below 2 °C

    Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense

    Full text link
    Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3l isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-offunction mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.This work was supported by the Spanish MICINN (Grants BFU2009-09771, EUI2009-04009 to PV), Generalitat Valenciana (Prometeo2010/020 to PV) and the German DFG (SCHE 235/15-1 to DS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Carrasco JimĂ©nez, JL.; CastellĂł Llopis, MJ.; Naumann, K.; Lassowskat, I.; Navarrete Gomez, ML.; Scheel, D.; Vera Vera, P. (2014). Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. PLoS ONE. 9:1-10. https://doi.org/10.1371/journal.pone.0090734S1109Carrasco, J. L. (2003). A novel transcription factor involved in plant defense endowed with protein phosphatase activity. The EMBO Journal, 22(13), 3376-3384. doi:10.1093/emboj/cdg323Carrasco, J. L., Ancillo, G., CastellĂł, M. J., & Vera, P. (2005). A Novel DNA-Binding Motif, Hallmark of a New Family of Plant Transcription Factors. Plant Physiology, 137(2), 602-606. doi:10.1104/pp.104.056002CastellĂł, M. J., Carrasco, J. L., & Vera, P. (2010). DNA-Binding Protein Phosphatase AtDBP1 Mediates Susceptibility to Two Potyviruses in Arabidopsis. Plant Physiology, 153(4), 1521-1525. doi:10.1104/pp.110.158923CastellĂł, M. J., Carrasco, J. L., Navarrete-GĂłmez, M., Daniel, J., Granot, D., & Vera, P. (2011). A Plant Small Polypeptide Is a Novel Component of DNA-Binding Protein Phosphatase 1-Mediated Resistance to Plum pox virus in Arabidopsis. Plant Physiology, 157(4), 2206-2215. doi:10.1104/pp.111.188953Denison, F. C., Paul, A.-L., Zupanska, A. K., & Ferl, R. J. (2011). 14-3-3 proteins in plant physiology. Seminars in Cell & Developmental Biology, 22(7), 720-727. doi:10.1016/j.semcdb.2011.08.006Carrasco, J. L., CastellĂł, M. J., & Vera, P. (2006). 14-3-3 Mediates Transcriptional Regulation by Modulating Nucleocytoplasmic Shuttling of Tobacco DNA-binding Protein Phosphatase-1. Journal of Biological Chemistry, 281(32), 22875-22881. doi:10.1074/jbc.m512611200Colcombet, J., & Hirt, H. (2008). ArabidopsisMAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 413(2), 217-226. doi:10.1042/bj20080625Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., 
 Meskiene, I. (2000). SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress–Induced MAPK, SIMK. The Plant Cell, 12(11), 2247-2258. doi:10.1105/tpc.12.11.2247CAMPS, M., NICHOLS, A., & ARKINSTALL, S. (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. The FASEB Journal, 14(1), 6-16. doi:10.1096/fasebj.14.1.6Bethke, G., Pecher, P., Eschen-Lippold, L., Tsuda, K., Katagiri, F., Glazebrook, J., 
 Lee, J. (2012). Activation of the Arabidopsis thaliana Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 25(4), 471-480. doi:10.1094/mpmi-11-11-0281Wolschin, F., Wienkoop, S., & Weckwerth, W. (2005). Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). PROTEOMICS, 5(17), 4389-4397. doi:10.1002/pmic.200402049Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., 
 Mundy, J. (2000). Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 103(7), 1111-1120. doi:10.1016/s0092-8674(00)00213-0Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., 
 Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977-983. doi:10.1038/415977aKosetsu, K., Matsunaga, S., Nakagami, H., Colcombet, J., Sasabe, M., Soyano, T., 
 Machida, Y. (2010). The MAP Kinase MPK4 Is Required for Cytokinesis in Arabidopsis thaliana. The Plant Cell, 22(11), 3778-3790. doi:10.1105/tpc.110.077164Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P., & Doonan, J. H. (2004). High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. The Plant Journal, 41(1), 162-174. doi:10.1111/j.1365-313x.2004.02281.xVierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688Gökirmak, T., Paul, A.-L., & Ferl, R. J. (2010). Plant phosphopeptide-binding proteins as signaling mediators. Current Opinion in Plant Biology, 13(5), 527-532. doi:10.1016/j.pbi.2010.06.001Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186-192. doi:10.1016/s0955-0674(99)00075-7Gupta, R., & Luan, S. (2003). Redox Control of Protein Tyrosine Phosphatases and Mitogen-Activated Protein Kinases in Plants. Plant Physiology, 132(3), 1149-1152. doi:10.1104/pp.103.020792Katou, S., Karita, E., Yamakawa, H., Seo, S., Mitsuhara, I., Kuchitsu, K., & Ohashi, Y. (2005). Catalytic Activation of the Plant MAPK Phosphatase NtMKP1 by Its Physiological Substrate Salicylic Acid-induced Protein Kinase but Not by Calmodulins. Journal of Biological Chemistry, 280(47), 39569-39581. doi:10.1074/jbc.m508115200Schweighofer, A., Kazanaviciute, V., Scheikl, E., Teige, M., Doczi, R., Hirt, H., 
 Meskiene, I. (2007). The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis. The Plant Cell, 19(7), 2213-2224. doi:10.1105/tpc.106.049585Ulm, R. (2001). Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes & Development, 15(6), 699-709. doi:10.1101/gad.192601Yamakawa, H., Katou, S., Seo, S., Mitsuhara, I., Kamada, H., & Ohashi, Y. (2003). Plant MAPK Phosphatase Interacts with Calmodulins. Journal of Biological Chemistry, 279(2), 928-936. doi:10.1074/jbc.m310277200Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., & Dinesh-Kumar, S. P. (2008). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes & Development, 23(1), 80-92. doi:10.1101/gad.1740009Sato, T., Maekawa, S., Yasuda, S., Domeki, Y., Sueyoshi, K., Fujiwara, M., 
 Yamaguchi, J. (2011). Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. The Plant Journal, 68(1), 137-146. doi:10.1111/j.1365-313x.2011.04673.xHunter, T. (2007). The Age of Crosstalk: Phosphorylation, Ubiquitination, and Beyond. Molecular Cell, 28(5), 730-738. doi:10.1016/j.molcel.2007.11.01

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe
    • 

    corecore