29 research outputs found
Born to yawn? Understanding yawning as a warning of the rise in cortisol levels: Randomized trial
Background: Yawning consistently poses a conundrum to the medical profession and neuroscientists. Despite neurological evidence such as parakinesia brachialis oscitans in stroke patients and thermo-irregulation in multiple sclerosis patients, there is considerable debate over the reasons for yawning with the mechanisms and hormonal pathways still not fully understood. Cortisol is implicated during yawning and may link many neurological disorders. Evidence was found in support of the Thompson cortisol hypothesis that proposes cortisol levels are elevated during yawning just as they tend to rise during stress and fatigue. Objectives: To investigate whether saliva cortisol levels rise during yawning and, therefore, support the Thompson cortisol hypothesis. Methods: We exposed 20 male and female volunteers aged between 18 and 53 years to conditions that provoked a yawning response in a randomized controlled trial. Saliva samples were collected at the start and again after the yawning response, or at the end of the stimuli presentations if the participant did not yawn. In addition, we collected electromyographic data of the jaw muscles to determine rest and yawning phases of neural activity. Yawning susceptibility scale, Hospital Anxiety and Depression Scale, General Health Questionnaire, and demographic and health details were also collected from each participant. A comprehensive data set allowed comparison between yawners and nonyawners, as well as between rest and yawning phases. Collecting electromyographic data from the yawning phase is novel, and we hope this will provide new information about neuromuscular activity related to cortisol levels. Exclusion criteria included chronic fatigue, diabetes, fibromyalgia, heart conditions, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. We compared data between and within participants. Results: In the yawning group, there was a significant difference between saliva cortisol samples (t = -3.071, P = .01). Power and effect size were computed based on repeated-measures t tests for both the yawning and nonyawning groups. There was a medium effect size for the nonyawners group (r = .467) but low power (36%). Results were similar for the yawners group: medium effect size (r = .440) and low power (33%). Conclusions: There was significant evidence in support of the Thompson cortisol hypothesis that suggests cortisol levels are elevated during yawning. A further longitudinal study is planned to test neurological patients. We intend to devise a diagnostic tool based on changes in cortisol levels that may assist in the early diagnosis of neurological disorders based on the data collected. Trial Registration: International Standard Randomized Controlled Trial Number (ISRCTN): 61942768; http://www.controlled-trials.com/ISRCTN61942768/61942768 (Archived by WebCite at http://www.webcitation.org/6A75ZNYvr)
Altered sense of Agency in children with spastic cerebral palsy
<p>Abstract</p> <p>Background</p> <p>Children diagnosed with spastic Cerebral Palsy (CP) often show perceptual and cognitive problems, which may contribute to their functional deficit. Here we investigated if altered ability to determine whether an observed movement is performed by themselves (sense of agency) contributes to the motor deficit in children with CP.</p> <p>Methods</p> <p>Three groups; <sub>1) </sub>CP children, <sub>2) </sub>healthy peers, and <sub>3) </sub>healthy adults produced straight drawing movements on a pen-tablet which was not visible for the subjects. The produced movement was presented as a virtual moving object on a computer screen. Subjects had to evaluate after each trial whether the movement of the object on the computer screen was generated by themselves or by a computer program which randomly manipulated the visual feedback by angling the trajectories 0, 5, 10, 15, 20 degrees away from target.</p> <p>Results</p> <p>Healthy adults executed the movements in 310 seconds, whereas healthy children and especially CP children were significantly slower (p < 0.002) (on average 456 seconds and 543 seconds respectively). There was also a statistical difference between the healthy and age matched CP children (p = 0.037). When the trajectory of the object generated by the computer corresponded to the subject's own movements all three groups reported that they were responsible for the movement of the object. When the trajectory of the object deviated by more than 10 degrees from target, healthy adults and children more frequently than CP children reported that the computer was responsible for the movement of the object. CP children consequently also attempted to compensate more frequently from the perturbation generated by the computer.</p> <p>Conclusions</p> <p>We conclude that CP children have a reduced ability to determine whether movement of a virtual moving object is caused by themselves or an external source. We suggest that this may be related to a poor integration of their intention of movement with visual and proprioceptive information about the performed movement and that altered sense of agency may be an important functional problem in children with CP.</p
Social modulation of contagious yawning in wolves
On the basis of observational and experimental evidence, several authors have proposed that contagious yawn is linked to our capacity for empathy, thus presenting a powerful tool to explore the root of empathy in animal evolution. The evidence for the occurrence of contagious yawning and its link to empathy, however, is meagre outside primates and only recently domestic dogs have demonstrated this ability when exposed to human yawns. Since dogs are unusually skilful at reading human communicative behaviors, it is unclear whether this phenomenon is deeply rooted in the evolutionary history of mammals or evolved de novo in dogs as a result of domestication. Here we show that wolves are capable of yawn contagion, suggesting that such ability is a common ancestral trait shared by other mammalian taxa. Furthermore, the strength of the social bond between the model and the subject positively affected the frequency of contagious yawning, suggesting that in wolves the susceptibility of yawn contagion correlates with the level of emotional proximity. Moreover, female wolves showed a shorter reaction time than males when observing yawns of close associates, suggesting that females are more responsive to their social stimuli. These results are consistent with the claim that the mechanism underlying contagious yawning relates to the capacity for empathy and suggests that basic building blocks of empathy might be present in a wide range of species
Familiarity bias and physiological responses in contagious yawning by dogs support link to empathy
In humans, the susceptibility to yawn contagion has been theoretically and empirically related to our capacity for empathy. Because of its relevance to evolutionary biology, this phenomenon has been the focus of recent investigations in nonhuman species. In line with the empathic hypothesis, contagious yawning has been shown to correlate with the level of social attachment in several primate species. Domestic dogs (Canis familiaris) have also shown the ability to yawn contagiously. To date, however, the social modulation of dog contagious yawning has received contradictory support and alternative explanations (i.e., yawn as a mild distress response) could explain positive evidence. The present study aims to replicate contagious yawning in dogs and to discriminate between the two possible mediating mechanisms (i.e., empathic vs. distress related response). Twenty-five dogs observed familiar (dog’s owner) and unfamiliar human models (experimenter) acting out a yawn or control mouth movements. Concurrent physiological measures (heart rate) were additionally monitored for twenty-one of the subjects. The occurrence of yawn contagion was significantly higher during the yawning condition than during the control mouth movements. Furthermore, the dogs yawned more frequently when watching the familiar model than the unfamiliar one demonstrating that the contagiousness of yawning in dogs correlated with the level of emotional proximity. Moreover, subjects’ heart rate did not differ among conditions suggesting that the phenomenon of contagious yawning in dogs is unrelated to stressful events. Our findings are consistent with the view that contagious yawning is modulated by affective components of the behavior and may indicate that rudimentary forms of empathy could be present in domesticated dogs
Yawn Contagion and Empathy in Homo sapiens
The ability to share others' emotions, or empathy, is crucial for complex social interactions. Clinical, psychological, and neurobiological clues suggest a link between yawn contagion and empathy in humans (Homo sapiens). However, no behavioral evidence has been provided so far. We tested the effect of different variables (e.g., country of origin, sex, yawn characteristics) on yawn contagion by running mixed models applied to observational data collected over 1 year on adult (>16 years old) human subjects. Only social bonding predicted the occurrence, frequency, and latency of yawn contagion. As with other measures of empathy, the rate of contagion was greatest in response to kin, then friends, then acquaintances, and lastly strangers. Related individuals (r≥0.25) showed the greatest contagion, in terms of both occurrence of yawning and frequency of yawns. Strangers and acquaintances showed a longer delay in the yawn response (latency) compared to friends and kin. This outcome suggests that the neuronal activation magnitude related to yawn contagion can differ as a function of subject familiarity. In conclusion, our results demonstrate that yawn contagion is primarily driven by the emotional closeness between individuals and not by other variables, such as gender and nationality
In Bonobos Yawn Contagion Is Higher among Kin and Friends
In humans, the distribution of yawn contagion is shaped by social closeness with strongly bonded pairs showing higher levels of contagion than weakly bonded pairs. This ethological finding led the authors to hypothesize that the phenomenon of yawn contagion may be the result of certain empathic abilities, although in their most basal form. Here, for the first time, we show the capacity of bonobos (Pan paniscus) to respond to yawns of conspecifics. Bonobos spontaneously yawned more frequently during resting/relaxing compared to social tension periods. The results show that yawn contagion was context independent suggesting that the probability of yawning after observing others\u27 yawns is not affected by the propensity to engage in spontaneous yawns. As it occurs in humans, in bonobos the yawing response mostly occurred within the first minute after the perception of the stimulus. Finally, via a Linear Mixed Model we tested the effect of different variables (e.g., sex, rank, relationship quality) on yawn contagion, which increased when subjects were strongly bonded and when the triggering subject was a female. The importance of social bonding in shaping yawn contagion in bonobos, as it occurs in humans, is consistent with the hypothesis that empathy may play a role in the modulation of this phenomenon in both species. The higher frequency of yawn contagion in presence of a female as a triggering subject supports the hypothesis that adult females not only represent the relational and decisional nucleus of the bonobo society, but also that they play a key role in affecting the emotional states of others
Recommended from our members
Sleep-related falling out of bed in Parkinson's disease.
Background and purposeSleep-related falling out of bed (SFOB), with its potential for significant injury, has not been a strong focus of investigation in Parkinson's disease (PD) to date. We describe the demographic and clinical characteristics of PD patients with and without SFOB.MethodsWe performed a retrospective analysis of 50 consecutive PD patients, who completed an REM sleep behavior disorder screening questionnaire (RBDSQ), questionnaires to assess for RBD clinical mimickers and questions about SFOB and resulting injuries. Determination of high risk for RBD was based on an RBDSQ score of 5 or greater.ResultsThirteen patients reported history of SFOB (26%). Visual hallucinations, sleep-related injury, quetiapine and amantadine use were more common in those patients reporting SFOB. Twenty-two patients (44%) fulfilled criteria for high risk for RBD, 12 of which (55%) reported SFOB. Five patients reported injuries related to SFOB. SFOB patients had higher RBDSQ scores than non-SFOB patients (8.2±3.0 vs. 3.3±2.0, p<0.01). For every one unit increase in RBDSQ score, the likelihood of SFOB increased two-fold (OR 2.4, 95% CI 1.3-4.2, p<0.003).ConclusionsSFOB may be a clinical marker of RBD in PD and should prompt confirmatory polysomnography and pharmacologic treatment to avoid imminent injury. Larger prospective studies are needed to identify risk factors for initial and recurrent SFOB in PD
Octanoic Acid Suppresses Harmaline-Induced Tremor in Mouse Model of Essential Tremor
Recent work exploring the use of high-molecular weight alcohols to treat essential tremor (ET) has identified octanoic acid as a potential novel tremor-suppressing agent. We used an established harmaline-based mouse model of ET to compare tremor suppression by 1-octanol and octanoic acid. The dose-related effect on digitized motion power within the tremor bandwidth as a fraction of overall motion power was analyzed. Both 1-octanol and octanoic acid provided significant reductions in harmaline tremor. An 8-carbon alkyl alcohol and carboxylic acid each suppress tremor in a pre-clinical mouse model of ET. Further studies are warranted to determine the safety and efficacy of such agents in humans with ET. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-012-0121-1) contains supplementary material, which is available to authorized users
Impaired sense of agency in functional movement disorders: An fMRI study
The sense of agency (SA) is an established framework that refers to our ability to exert and perceive control over our own actions. Having an intact SA provides the basis for the human perception of voluntariness, while impairments in SA are hypothesized to lead to the perception of movements being involuntary that may be seen many neurological or psychiatric disorders. Individuals with functional movement disorders (FMD) experience a lack of control over their movements, yet these movements appear voluntary by physiology. We used fMRI to explore whether alterations in SA in an FMD population could explain why these patients feel their movements are involuntary. We compared the FMD group to a control group that was previously collected using an ecologically valid, virtual-reality movement paradigm that could modulate SA. We found selective dysfunction of the SA neural network, whereby the dorsolateral prefrontal cortex and pre-supplementary motor area on the right did not respond differentially to the loss of movement control. These findings provide some of the strongest evidence to date for a physiological basis underlying these disabling disorders
Technology in Parkinson's disease: Challenges and opportunities
Contains fulltext :
168175.pdf (publisher's version ) (Closed access)The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. (c) 2016 International Parkinson and Movement Disorder Society