108 research outputs found

    Ultrasonic scattering from spherically orthotropic shells

    Get PDF
    Concerns over the detectability of embrittlement in high strength alloys has led to studying a simple anisotropic shell model [1] for grain boundaries decorated by precipitates, or otherwise enriched by segregated inhomogenieties. In this model the shell is presumed to be “spherically orthotropic,” having five independent elastic constants and symmetry about the origin of a spherical coordinate system. This structure is analogous to transversely isotropic materials in a Cartesian coordinate system. By studying ultrasonic scattering from such shells (embedded in an isotropic host, and surrounding an isotropic core), we hope to learn whether their presence could be detected, and differentiated from scattering due to the inherent anisotropy of single metal crystals [2,3]

    Use of the Connection Machine to Study Ultrasonic Wave Propagation in Materials

    Get PDF
    The architecture of conventional (von Neumann) computers, with a single processor and millions of memory units, is inherently inefficient for most applications. In fact, while the processor is extremely busy all the time, only a very small portion of the memory is active. Larger computers are even less efficient, since the ratio of processing power to memory is even smaller and the length of computation is dominated by the ever increasing time required to move data between processor and memory. To overcome this so-called “von Neumann bottleneck,” a new kind of computer, called the “Connection Machine” (CM) has been designed, with a larger number (thousands) of processors, connected in a programmable way, in the framework of a fixed physical wiring scheme [1]. This parallelism allows an opportunity to efficiently reformulate the problem to be studied and modify the approach [2-4]. Currently, the memory available is limited and requires some care in programming. This limitation should decrease with new CM-type machines

    Variation in population levels of sedentary time in European children and adolescents according to cross-European studies: a systematic literature review within DEDIPAC

    Get PDF
    peer-reviewedBackground: A high amount of sedentary time has been proposed as a risk factor for various health outcomes in adults. While the evidence is less clear in children and adolescents, monitoring sedentary time is important to understand the prevalence rates and how this behaviour varies over time and by place. This systematic literature review aims to provide an overview of existing cross-European studies on sedentary time in children (0-12y) and adolescents (13-18y), to describe the variation in population levels of sedentary time, and to discuss the impact of assessment methods. Methods: Six literature databases were searched (PubMed, EMBASE, CINAHL, PsycINFO, SportDiscus and OpenGrey), followed by backward- and forward tracking and searching authors’ and experts’ literature databases. Included articles were observational studies reporting on levels of sedentary time in the general population of children and/or adolescents in at least two European countries. Population levels were reported separately for children and adolescents. Data were reviewed, extracted and assessed by two researchers, with disagreements being resolved by a third researcher. The review protocol is published under registration number CRD42014013379 in the PROSPERO database. Forty-two eligible articles were identified, most were cross-sectional (n = 38). The number of included European countries per article ranged from 2 to 36. Levels of sedentary time were observed to be higher in East-European countries compared to the rest of Europe. There was a large variation in assessment methods and reported outcome variables. The majority of articles used a child-specific questionnaire (60 %). Other methods included accelerometers, parental questionnaires or interviews and ecological momentary assessment tools. Television time was reported as outcome variable in 57 % of included articles (ranging from a mean value of 1 h to 2.7 h in children and 1.3 h to 4.4 h in adolescents), total sedentary time in 24 % (ranging from a mean value of 192 min to 552 min in children and from 268 min to 506 min in adolescents). A substantial number of published studies report on levels of sedentary time in children and adolescents across European countries, but there was a large variation in assessment methods. Questionnaires (child specific) were used most often, but they mostly measured specific screen-based activities and did not assess total sedentary time. There is a need for harmonisation and standardisation of objective and subjective methods to assess sedentary time in children and adolescents to enable comparison across countries

    Oligodendrocyte Development in the Absence of Their Target Axons In Vivo

    Get PDF
    Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp) mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons. Together, our data illustrate the power of zebrafish for studying the entire life-course of the oligodendrocyte lineage in vivo in an altered axonal environment

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    General Theory

    No full text

    Über Verallgemeinerte Numerische Integrationen

    No full text
    • 

    corecore