624 research outputs found

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Critical properties of Sudden Quench Dynamics in the anisotropic XY Model

    Full text link
    We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field aa exhibits a divergence at the critical points when final magnetic field bb is fixed. A special case that final magnetic field bb is just at the critical point is discussed separately. Some of the critical exponents of the dynamical QPT are obtained and the long-range correlation of the quench system is analyzed. We also compare our result with that of the static QPT.Comment: published on EPJ

    Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses

    Get PDF
    Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.This research was sponsored by FEDER funds through the COMPETE program (Programa Operacional Factores de Competitividade) and by FCT (Fundação para a Ciência e a Tecnologia), under the projects PEST-C/FIS/UI607/2013 and PEst-C/EME/UI0285/2013. The authors also acknowledge the financial support by the project Nano4color – Design and develop a new generation of color PVD coatings for decorative applications (FP7 EC R4SME Project No. 315286). J. Borges also acknowledges the support by the European social fund within the framework of realising the project “Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague”, CZ.1.07/2.3.00/30.0034. C. Lopes acknowledges FCT for the PhD grant SFRH/BD/103373/2014. F.M. Couto acknowledges CAPES – Foundation, Ministry of Education of Brazil, Brasília – DF 70040-20, Brazil, funding by stage sandwich doctorate, through PDSE – Doctoral Program Sandwich

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities

    Get PDF
    We have fabricated two types of crosslinked chitosan-based nanoparticles (NPs), namely (1) ionically crosslinked with tripolyphosphate (TPP), designated as IC-NPs and (2) dually co-crosslinked (ionically and covalently with TPP and genipin, respectively) termed CC-NPs. The two types of NPs were physichochemically characterized by means of DLS-NIBS, synchrotron SAXS and M3-PALS (zeta potential). First, we found that covalent co-crosslinking of ionically pre-crosslinked nanoparticles yielded monodisperse CC-NPs in the size range of ∼200 nm, whereas the parental IC-NPs remained highly polydisperse. While both types of chitosan nanoparticles displayed a core-shell structure, as determined by synchrotron SAXS, only the structure of CC-NPs remained stable at long incubation times. This enhanced structural robustness of CC-NPs was likely responsible of their superior colloidal stability even in biological medium. Second, we explored the antimicrobial and quorum sensing inhibition activity of both types of nanoparticles. We found that CC-NPs had lower long-term toxicity than IC-NPs. In contrast, sub-lethal doses of IC-NPs consistently displayed higher levels of quorum quenching activity than CC-NPs. Thus, this work underscores the influence of the NP’s ultrastructure on their colloidal and biological properties. While the cellular and molecular mechanisms at play are yet to be fully elucidated, our results broaden the spectrum of use of chitosan-based nanobiomaterialsin the development of antibiotic-free approaches against Gram-negative pathogenic bacteria

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore