1,256 research outputs found
Towards a new methodology for the characterisation of crack tip fields based on a hybrid computational approach
This work presents a hybrid optimisation technique for the simultaneous calculation of crack tip characterising parameters and its spatial location, which can significantly affect the characterising parameters if the position used is inaccurate. The hybrid technique combines initial use of a genetic algorithm to obtain a well-conditioned set of initial parameter values that is then passed to an interior point optimisation algorithm for subsequent fast optimisation. Use of the hybrid technique is also amenable to easy automation. The capability of the technique is demonstrated using the CJP crack tip field model, with digital image correlation (DIC) being used to measure the 2D crack tip displacement field. This model was chosen, not only for its demonstrated sensitivity to accuracy in crack tip location, but also for its proven utility in providing effective crack growth correlation in the presence of plasticity-induced shielding across a wide range of growth rates. The results obtained from the hybrid technique are shown to be reliable through comparison with results obtained using other established techniques
Characterization of non-planar crack tip displacement fields using a differential geometry approach in combination with 3D digital image correlation
This paper describes a novel differential geometry method that is used in combination with 3D digital image correlation (3D-DIC) for crack tip field characterization on non-planar (curved) surfaces. The proposed approach allows any of the two-dimensional crack tip field models currently available in the literature to be extended to the analysis of a 3D developable surface with zero Gaussian curvature. The method was validated by analyzing the crack tip displacement fields on hollow thin-walled cylindrical specimens, manufactured from either 304L or 2024-T3 alloy that contained a central circumferential crack. The proposed approach was checked via a comparison between experimentally measured displacement fields (3D-DIC) and those reconstructed from a modified 2D crack tip model (utilizing either 2, 3, or 4 terms of the William's expansion series) and implementing a 3D geometrical correction. Further validation was provided by comparing model-derived stress intensity factors with values provided by empirical correlations
Experimental evaluation of plastic wake on growing fatigue cracks from the analysis of residual displacement fields
A growing fatigue crack gives rise to a plastically deformed wake of material that envelops the crack. In this work, the plastic wake extent during fatigue crack growth is experimentally quantified by analyzing the crack tip displacement fields measured with digital image correlation. A novel technique based on use of a yield criterion is proposed that uses the undamaged state of the specimen as the reference state in the image processing. The plastic wake was identified by differentiation of the residual displacement fields obtained with a near-zero load level to avoid any rigid body motion. The plastic wake extent was then found by assuming that the boundary between the elastic and plastic regions would occur when the equivalent stress was higher than the yield stress of the material. The results presented can contribute to a better understanding of the mechanisms driving fatigue crack propagation
The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes
Histone Acetylation-Mediated Regulation of the Hippo Pathway
The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al
Recommended from our members
The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae)
The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce.In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships.This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds
Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment
Background: Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process.
Methods and Findings: Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR.
Conclusion: Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions
- …