15 research outputs found

    Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration

    Full text link
    The human eye is a complex organ with unique anatomy and physiology that restricts the delivery of drugs to target ocular tissues/sites. Recent advances in the field of pharmacy, biotechnology and material science have led to development of novel ophthalmic dosage forms which can provide sustained drug delivery, reduce dosing frequency and improve the ocular bioavailability of drugs. This review highlights the different anatomical and physiological factors which affect ocular bioavailability of drugs and explores advancements from 2016 to 2020 in various ophthalmic preparations. Different routes of drug administration such as topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral and retrobulbar are discussed with their advances and limitations

    Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery

    Full text link
    The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization

    Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies

    Full text link
    Ocular drug delivery using contact lenses may be able to substitute for eye drop therapy. However, issues with hydrophobic drugs (like bimatoprost that is used to treat glaucoma) such as low drug uptake using a simple soaking method into preformed contact lenses and alteration in the swelling and transmittance of lenses restricts the application for drug delivery. This research uses graphene oxide (GO) to control the release of bimatoprost from contact lenses along with improvements in the drug uptake, and lens swelling and transmittance. GO was loaded into silicone hydrogel contact lenses by adding the GO at the same time as lenses were polymerized. These lenses were soaked in bimatoprost. Alternatively contact lenses, either with or without GO, were produced by adding bimatoprost during lens polymerization. GO improved contact lens swelling due to its water binding capacity and lens transmittance due to the molecular dispersion of bimatoprost on the surface of the GO which prevented the local precipitation of the drug. The bimatoprost uptake was not improved in the presence of GO. However, its in vitro release profile was improved. Adding bimatoprost and GO at the same time as lenses were polymerized (DL-GO-BMT) significantly decreased the loss of drug during extraction and sterilization in comparison to contact lenses (DL-BMT) without GO. As the amount of GO was increased, the DL-GO-BMT lenses showed a significant decrease in the burst and cumulative release of bimatoprost. Ocular irritation and histopathology reports demonstrated the safety of GO contact lens. The in vivo pharmacokinetic studies in the rabbit tear fluid showed significant improvement in mean residence time (MRT) and area under the curve (AUC) with DL-GO-0.2 μg-BMT-100 contact lens in comparison to eye drop solution. The study demonstrated that the addition of GO to contact lenses can control the release of bimatoprost as well as improved the lens swelling and transmittance. However, further optimization is needed to modulate the release of drug within the therapeutic level to manage glaucoma
    corecore