24 research outputs found
Development of a Quenching-Partitioning Process Chain for Forging Components
The aim is to realize a Q&P (Quenching and Partitioning) process for a hot forged component made of low-alloyed advanced high-strength steel (AHSS) 42MnSiCr. One advantage of this steel is the low alloy concept which is cost-effective. After forging, the component is cooled down to room temperature with a subsequent heat treatment to achieve the characteristic microstructure with martensite and retained austenite. The material is annealed and then quenched to just above the martensite finish temperature (MF-temperature). Hence, in the martensitic matrix about 10 to 15% retained austenite is included. Finally, the Q&Ped material is artificially aged at 250 °C to support the diffusion process of carbon from the over-saturated martensite into the austenite. Thereby, mechanical properties of 2000 MPa for tensile strength with fracture strains of 10% can be achieved. This paper provides details of the process and material behavior for a reduction of the process chain. The goal is to develop a technology for the quenching and partitioning treatment of forged components by using the thermal energy from forging. Ideally, the quenching step should be performed in the forming dies just above the MF-temperature with additional holding on the temperature level. The majority of forged parts have different cross sections. Therefore, the cooling conditions are inhomogeneous in each cross section of the components. This cooling behavior was analyzed in laboratory tests with a forged part. Furthermore, the heat transfer coefficients were determined for different cooling media (water, air). The cooling technology was experimentally and numerically simulated in a first step for the conventional process chain (forging, cooling to room temperature, austenitisation, quenching, artificial ageing) and correlated with the microstructural evolution in combination with the component’s mechanical properties.</jats:p
Search for a dark photon in electroproduced e+e− pairs with the Heavy Photon Search experiment at JLab
The Heavy Photon Search experiment took its first data in a 2015 engineering run using a 1.056 GeV, 50 nA electron beam provided by CEBAF at the Thomas Jefferson National Accelerator Facility, searching for a prompt, electroproduced dark photon with a mass between 19 and 81 MeV/c2. A search for a resonance in the e+e− invariant mass distribution, using 1.7 days (1170 nb−1) of data, showed no evidence of dark photon decays above the large QED background, confirming earlier searches and demonstrating the full functionality of the experiment. Upper limits on the square of the coupling of the dark photon to the standard model photon are set at the level of 6×10−6. Future runs with higher luminosity will explore new territory
Calcium molybdate: Toxicity and genotoxicity assay in Drosophila melanogaster by SMART test
Searching for Prompt and Long-Lived Dark Photons in Electro-Produced Pairs with the Heavy Photon Search Experiment at JLab
The Heavy Photon Search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electro-produced dark photons. We report results from the 2016 Engineering Run consisting of 10608/nb of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of ϵ^2 ≥ 10^-5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background in the masses between 60 and 150 MeV, but had insufficient luminosity to limit canonical heavy photon production. This is the first displaced vertex search result published by HPS. HPS has taken high-luminosity data runs in 2019 and 2021 that will explore new dark photon phase space
Searching for Prompt and Long-Lived Dark Photons in Electro-Produced Pairs with the Heavy Photon Search Experiment at JLab
The Heavy Photon Search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electro-produced dark photons. We report results from the 2016 Engineering Run consisting of 10608/nb of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of ϵ^2 ≥ 10^-5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background in the masses between 60 and 150 MeV, but had insufficient luminosity to limit canonical heavy photon production. This is the first displaced vertex search result published by HPS. HPS has taken high-luminosity data runs in 2019 and 2021 that will explore new dark photon phase space
