25 research outputs found
Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor
In superconductors possessing both time and inversion symmetries, the Zeeman effect of an external magnetic field can break the time-reversal symmetry, forming a conventional Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state characterized by Cooper pairings with finite momentum1,2. In superconductors lacking (local) inversion symmetry, the Zeeman effect may still act as the underlying mechanism of FFLO states by interacting with spin–orbit coupling (SOC). Specifically, the interplay between the Zeeman effect and Rashba SOC can lead to the formation of more accessible Rashba FFLO states that cover broader regions in the phase diagram3–5. However, when the Zeeman effect is suppressed because of spin locking in the presence of Ising-type SOC, the conventional FFLO scenarios are no longer effective. Instead, an unconventional FFLO state is formed by coupling the orbital effect of magnetic fields with SOC, providing an alternative mechanism in superconductors with broken inversion symmetries6–8. Here we report the discovery of such an orbital FFLO state in the multilayer Ising superconductor 2H-NbSe2. Transport measurements show that the translational and rotational symmetries are broken in the orbital FFLO state, providing the hallmark signatures of finite-momentum Cooper pairings. We establish the entire orbital FFLO phase diagram, consisting of a normal metal, a uniform Ising superconducting phase and a six-fold orbital FFLO state. This study highlights an alternative route to achieving finite-momentum superconductivity and provides a universal mechanism to preparing orbital FFLO states in similar materials with broken inversion symmetries.</p
Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripeningrelated genes isolated by differential display.
Differential display was used to isolate early ethyleneregulated genes from late immature green tomato fruit in order to obtain a broader understanding of the molecular basis by which ethylene coordinates the ripening process. Nineteen novel ethylene-responsive (ER) cDNA clones were isolated that fell into three classes: (i) ethylene up-regulated (ii) ethylene downregulated, and (iii) transiently induced. Expression analysis revealed that ethylene-dependent changes in mRNA accumulation occurred rapidly (15 min) for most of the ER clones. The predicted proteins encoded by the ER genes are putatively involved in processes as diverse as primary metabolism, hormone signalling and stress responses. Although a number of the isolated ER clones correspond to genes already documented in other species, their responsiveness to ethylene is described here for the ®rst time. Among the ER clones sharing high homology with regulatory genes, ER43, a putative GTP-binding protein, and ER50, a CTR1-like clone, are potentially involved in signal transduction. ER24 is homologous to the multiprotein bridging factor MBF1 involved in transcriptional activation, and ®nally, two clones are homologous to genes involved in post-transcriptional regulation: ER49, a putative translational elongation factor, and ER68, a mRNA helicase-like gene. Six ER clones correspond to as yet unidenti®ed genes. The expression studies indicated that all the ER genes are ripening-regulated, and, depending on the clone, show changes in transcript accumulation either at the breaker, turning, or red stage. Analysis of transcript accumulation in different organs indicated a strong bias towards expression in the fruit for many of the clones. The potential roles for some of the ER clone
Integrated global assessment of the natural forest carbon potential
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets
The global distribution and drivers of wood density and their impact on forest carbon stocks.
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems
Optimization of the imaginary time step evolution for the Dirac equation
Taking the single neutron levels of 12C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh size for the Dirac equation is investigated. For the weakly bound states, in order to reproduce the exact single-particle energies and wave functions, a relatively large box size is required. As long as the exact results can be reproduced, the ITS evolution with a smaller box size converges faster, while for both the weakly and deeply bound states, the ITS evolutions are less sensitive to the mesh size. Moreover, one can find a parabola relationship between the mesh size and the corresponding critical time step, i.e., the largest time step to guarantee the convergence, which suggests that the ITS evolution with a larger mesh size allows larger critical time step, and thus can converge faster to the exact result. These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations. © 2010 Science China Press and Springer-Verlag Berlin Heidelberg.Articl
Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor
The conventional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state relies on the
Zeeman effect of an external magnetic field to break time-reversal symmetry,
forming a state of finite-momentum Cooper pairing. In superconductors with
broken inversion symmetries, the Rashba or Ising-type spin-orbit coupling (SOC)
can interact with either the Zeeman or the orbital effect of magnetic fields,
extending the range of possible FFLO states, though evidence for these more
exotic forms of FFLO pairing has been lacking. Here we report the discovery of
an unconventional FFLO state induced by coupling the Ising SOC and the orbital
effect in multilayer 2H-NbSe2. Transport measurements show that the
translational and rotational symmetries are broken in the orbital FFLO state,
providing the hallmark signatures of finite momentum cooper pairings. We
establish the entire orbital FFLO phase diagram, consisting of normal metal,
uniform Ising superconducting phase, and a six-fold orbital FFLO state. This
study highlights an alternative route to finite-momentum superconductivity and
provides a universal mechanism to prepare orbital FFLO states in similar
materials with broken inversion symmetries