24 research outputs found

    Applications of Human Tissue-Engineered Blood Vessel Models to Study the Effects of Shed Membrane Microparticles from T-Lymphocytes on Vascular Function

    Get PDF
    Microparticles (MPs) are membrane vesicles harboring cell surface proteins and containing cytoplasmic components of the original cell. High levels of circulating MPs have been detected in pathological states associated with vascular dysfunction. We took advantage of the self-assembly method of tissue engineering to produce in vitro three vascular constructs from human vascular smooth muscle cells and fibroblasts to investigate the role of the adventitia in the modulation of vascular tone by MPs, comparing the contractile response of each of these constructs to histamine. The first two were composed of an adventitia (tissue-engineered vascular adventitia (TEVA)) or a media (tissue-engineered vascular media (TEVM)) solely, and the third one contained a media and an adventitia (tissue-engineered vascular media and adventitia (TEVMA)). In the three constructs, the results show that histamine induces contraction insensitive to blockade of inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) and not affected by MP treatment. MPs decreased NO production and nuclear factor (NF)-κB expression but did not affect superoxide anion (O2−) release in TEVA. MPs enhanced NF-κB expression but did not affect iNOS and COX-2 expression or NO or O2− release in TEVM. In TEVMA, MPs did not enhance NF-κB expression, but COX-2 expression was higher, and O2− release was lower. Thus, MPs affected NO, O2−, NF-κB, and COX-2 in a subtle fashion to maintain the contractile response to histamine. The use of tissue-engineered vascular constructs results in a better understanding of the effect of MPs on human adventitia and media

    Evaluation and management of patients with chronic thromboembolic pulmonary hypertension: consensus statement from the ISHLT

    Get PDF
    ISHLT members have recognized the importance of a consensus statement on the evaluation and management of patients with chronic thromboembolic pulmonary hypertension. The creation of this document required multiple steps, including the engagement of the ISHLT councils, approval by the Standards and Guidelines Committee, identification and selection of experts in the field, and the development of 6 working groups. Each working group provided a separate section based on an extensive literature search. These sections were then coalesced into a single document that was circulated to all members of the working groups. Key points were summarized at the end of each section. Due to the limited number of comparative trials in this field, the document was written as a literature review with expert opinion rather than based on level of evidence. (C) 2021 International Society for Heart and Lung Transplantation. All rights reserved.Thrombosis and Hemostasi

    Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance

    No full text
    The use of microstructured substrates to study and influence cell orientation, which plays an important role in tissue functionality, has been of great interest lately. Silicon and poly(dimethylsiloxane) substrates have typically been used, but long processing times and exogenous protein surface coating, required to enhance cell viability, limit their use as large-scale platforms. There is thus a need for a non-biodegradable biocompatible substrate that allows rapid and low cost microfabrication. In this paper a styrene-(ethylene/butylene)-styrene block co-polymer (SEBS) microstructured by a rapid replication technique using low pressure an isothermal hot embossing approach has been demonstrated. SEBS substrates were treated with oxygen plasma to enhance cell adhesion and sterilized using ethylene oxide gas. While cell adhesion to and proliferation on these substrates was as good as on tissue culture polystyrene, cellular alignment on microstructured SEBS was also very high (97.7 \ub1 0.5%) when calculated within a 10\ub0 angle variation from the longitudinal axis. Furthermore, tissue sheets on microstructured SEBS have been produced and exhibited cellular alignment within the engineered tissue. In addition, these results were obtained without coating the material with exogenous proteins. Such substrates should be helpful in the culture of tissue engineered substitutes with an intrinsic orientation and to elucidate questions in cell biology.Peer reviewed: YesNRC publication: Ye

    Erratum: Skin Substitutes and Wound Healing

    No full text
    Medical science has vastly improved on the means and methods available for the treatment of wounds in the clinic. The production and use of various types of skin substitutes has led to dramatic improvements in the odds of survival for severely burned patients, but they have also shown promise for many other applications, including cases involving chronic wounds that are not life threatening. Nowadays, more than 20 products are commercially available, more are undergoing clinical trials and a large number of new models are being investigated in various research laboratories worldwide. Many of the current products do not contain any living cells and vary in their capacity to harness the innate capacity of the body to heal itself. Others include living cells, of allogeneic or autologous origin, and are often referred to as ‘cellular therapy’ or ‘tissue-engineered’ products. Modifications and improvements are currently investigated that aim at improving the healing potential of those products through the use of recombinant growth factors and additional features such as microvascularization. Fundamental research into wound healing and scar-free regeneration raises the hope that we will eventually be able to restore almost completely the appearance and function of skin after the healing of wounds

    Growth and Stratification of Epithelial Cells in Minimal Culture Conditions

    No full text
    Biological risk management is required in modern tissue engineering. Particular attention should be paid to the culture medium and the scaffold used. In this perspective, it is important to define minimal culture conditions which allow proper growth and differentiation of epithelial cells in vitro. We propose a simple experimental system which permits the generation of three-dimensional epidermal constructs using a collagen layer as a scaffold mimicking the entire dermal tissue and without the need of any feeder layer. Although showing significant differences compared to natural epidermis, these epidermal constructs appear useful to study keratinocyte differentiation and epidermis histogenesis
    corecore