452 research outputs found
Salt-gradient Solar Ponds: Summary of US Department of Energy Sponsored Research
The solar pond research program conducted by the United States Department of Energy was discontinued after 1983. This document summarizes the results of the program, reviews the state of the art, and identifies the remaining outstanding issues. Solar ponds is a generic term but, in the context of this report, the term solar pond refers specifically to saltgradient solar pond. Several small research solar ponds have been built and successfully tested. Procedures for filling the pond, maintaining the gradient, adjusting the zone boundaries, and extracting heat were developed. Theories and models were developed and verified. The major remaining unknowns or issues involve the physical behavior of large ponds; i.e., wind mixing of the surface, lateral range or reach of horizontally injected fluids, ground thermal losses, and gradient zone boundary erosion caused by pumping fluid for heat extraction. These issues cannot be scaled and must be studied in a large outdoor solar pond
Measurement of salinity distributions in salt‐stratified, double‐diffusive systems by optical deflectometry
This is the published version. Copyright © 1986 American Institute of PhysicsReliable salinity measurements in double‐diffusive thermohaline solutions are necessary to understand relevant system behavior. An optical technique, which has previously been used to investigate solutediffusion in isothermal systems, is employed to measure the salinity distribution in a double‐diffusive thermohaline system. The technique is verified by comparison with independent salinity measurements, and its use in a double‐diffusive system reveals detailed salinity distribution information. When used with the shadowgraph method of flow visualization, the salinity measurement technique permits a more quantitative interpretation of the shadowgraphic results
Experimental investigation of the electronic structure of Gd5Si2Ge2 by photoemission and x-ray absorption spectroscopy
The electronic structure of the magnetic refrigerant Gd5Ge2Si2 has been experimentally investigated by photoemission and x-ray absorption spectroscopy. The resonant photoemission and x-ray absorption measurements performed across the Gd N4,5 and Gd M4,5 edges identify the position of Gd 4f multiplet lines, and assess the 4f occupancy (4f7) and the character of the states close to the Fermi edge. The presence of Gd 5d states in the valence band suggests that an indirect 5d exchange mechanism underlies the magnetic interactions between Gd 4f moments in Gd5Ge2Si2. From 175 to 300 K the first 4 eV of the valence band and the Gd partial density of states do not display clear variations. A significant change is instead detected in the photoemission spectra at higher binding energy, around 5.5 eV, likely associated to the variation of the bonding and antibonding Ge(Si) s bands across the phase transition
Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: a pilot study
The purpose of this pilot study was to determine the efficacy of an extremely low-frequency magnetic field (ELF-MF) in decreasing chronic pain in fibromyalgia (FM) patients. Thirty-seven females were recruited and randomized into two groups: one group was first exposed to systemic ELF-MF therapy (100 microtesla, 1 to 80 Hz) and then to sham therapy, and the other group received the opposite sequence of intervention. Pain, FM-related symptoms, and the ability to perform daily tasks were measured using the Visual Analog Scale, Fibromyalgia Impact Questionnaire (FIQ), Fibromyalgia Assessment Scale (FAS), and Health Assessment Questionnaire (HAQ) at baseline, end of first treatment cycle, beginning of second treatment cycle (after 1 mo washout), end of second treatment cycle, and end of 1 mo follow-up. ELF-MF treatment significantly reduced pain, which increased on cessation of therapy but remained significantly lower than baseline levels. Short-term benefits were also observed in FIQ, FAS, and HAQ scores, with less significant effects seen in the medium term. ELF-MF therapy can be recommended as part of a multimodal approach for mitigating pain in FM subjects and improving the efficacy of drug therapy or physiotherapy
Using XDAQ in Application Scenarios of the CMS Experiment
XDAQ is a generic data acquisition software environment that emerged from a
rich set of of use-cases encountered in the CMS experiment. They cover not the
deployment for multiple sub-detectors and the operation of different processing
and networking equipment as well as a distributed collaboration of users with
different needs. The use of the software in various application scenarios
demonstrated the viability of the approach. We discuss two applications, the
tracker local DAQ system for front-end commissioning and the muon chamber
validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics,
La Jolla, CA
The CMS Event Builder
The data acquisition system of the CMS experiment at the Large Hadron
Collider will employ an event builder which will combine data from about 500
data sources into full events at an aggregate throughput of 100 GByte/s.
Several architectures and switch technologies have been evaluated for the DAQ
Technical Design Report by measurements with test benches and by simulation.
This paper describes studies of an EVB test-bench based on 64 PCs acting as
data sources and data consumers and employing both Gigabit Ethernet and Myrinet
technologies as the interconnect. In the case of Ethernet, protocols based on
Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies,
including measurements on throughput and scaling are presented.
The architecture of the baseline CMS event builder will be outlined. The
event builder is organised into two stages with intelligent buffers in between.
The first stage contains 64 switches performing a first level of data
concentration by building super-fragments from fragments of 8 data sources. The
second stage combines the 64 super-fragments into full events. This
architecture allows installation of the second stage of the event builder in
steps, with the overall throughput scaling linearly with the number of switches
in the second stage. Possible implementations of the components of the event
builder are discussed and the expected performance of the full event builder is
outlined.Comment: Conference CHEP0
Расчет гашения обратного напряжения в импульсной схеме
Grid and e-science infrastructure interoperability is an increasing demand for Grid applications but interoperability based on common open standards adopted by Grid middle-wares are only starting to emerge on Grid infrastructures and are not broadly provided today. In earlier work we have shown how open standards can be improved by lessons learned from cross-Grid applications that require access to both, High Throughput Computing (HTC) resources as well as High Performance Computing (HPC) resources. This paper provides more insights in several concepts with a particular focus on effectively describing Grid job descriptions in order to satisfy the demands of e-scientists and their cross-Grid applications. Based on lessons learned over years gained with interoperability setups between production Grids such as EGEE, DEISA, and NorduGrid, we illustrate how common open Grid standards (i.e. JSDL and GLUE2) can take cross-Grid application experience into account
CD56, HLA-DR, and CD45 recognize a subtype of childhood AML harboring CBFA2T3-GLIS2 fusion transcript
The presence of CBFA2T3‐GLIS2 fusion gene has been identified in childhood Acute Myeloid Leukemia (AML). In view of the genomic studies indicating a distinct gene expression profile, we evaluated the role of immunophenotyping in characterizing a rare subtype of AML‐CBFA2T3‐GLIS2 rearranged. Immunophenotypic data were obtained by studying a cohort of 20 pediatric CBFA2T3‐GLIS2‐AML and 77 AML patients not carrying the fusion transcript. Enrolled cases were included in the Associazione Italiana di Ematologia Oncologia Pediatrica (AIEOP) AML trials and immunophenotypes were compared using different statistical approaches. By multiple computational procedures, we identified two main core antigens responsible for the identification of the CBFA2T3‐GLIS2‐AML. CD56 showed the highest performance in single marker evaluation (AUC = 0.89) and granted the most accurate prediction when used in combination with HLA‐DR (AUC = 0.97) displaying a 93% sensitivity and 99% specificity. We also observed a weak‐to‐negative CD45 expression, being exceptional in AML. We here provide evidence that the combination of HLA‐DR negativity and intense bright CD56 expression detects a rare and aggressive pediatric AML genetic lesion improving the diagnosis performance
- …