2,317 research outputs found
New Results for Diffusion in Lorentz Lattice Gas Cellular Automata
New calculations to over ten million time steps have revealed a more complex
diffusive behavior than previously reported, of a point particle on a square
and triangular lattice randomly occupied by mirror or rotator scatterers. For
the square lattice fully occupied by mirrors where extended closed particle
orbits occur, anomalous diffusion was still found. However, for a not fully
occupied lattice the super diffusion, first noticed by Owczarek and Prellberg
for a particular concentration, obtains for all concentrations. For the square
lattice occupied by rotators and the triangular lattice occupied by mirrors or
rotators, an absence of diffusion (trapping) was found for all concentrations,
except on critical lines, where anomalous diffusion (extended closed orbits)
occurs and hyperscaling holds for all closed orbits with {\em universal}
exponents and . Only one point on these critical lines can be related to a
corresponding percolation problem. The questions arise therefore whether the
other critical points can be mapped onto a new percolation-like problem, and of
the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email:
[email protected]
ExTrA: Exoplanets in Transit and their Atmospheres
The ExTrA facility, located at La Silla observatory, will consist of a
near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA
will add the spectroscopic resolution to the traditional differential
photometry method. This shall enable the fine correction of color-dependent
systematics that would otherwise hinder ground-based observations. With both
this novel method and an infrared-enabled efficiency, ExTrA aims to find
transiting telluric planets orbiting in the habitable zone of bright nearby M
dwarfs. It shall have the versatility to do so by running its own independent
survey and also by concurrently following-up on the space candidates unveiled
by K2 and TESS. The exoplanets detected by ExTrA will be amenable to
atmospheric characterisation with VLTs, JWST, and ELTs and could give our first
peek into an exo-life laboratory.Comment: 15 pages, 11 figures, SPIE 201
Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks
This is the first paper of a series of three, reporting on numerical
simulation studies of geometric and mechanical properties of static assemblies
of spherical beads under an isotropic pressure. Frictionless systems assemble
in the unique random close packing (RCP) state in the low pressure limit if the
compression process is fast enough, slower processes inducing traces of
crystallization, and exhibit specific properties directly related to
isostaticity of the force-carrying structure. The different structures of
frictional packings assembled by various methods cannot be classified by the
sole density. While lubricated systems approach RCP densities and coordination
number z^*~=6 on the backbone in the rigid limit, an idealized "vibration"
procedure results in equally dense configurations with z^*~=4.5. Near neighbor
correlations on various scales are computed and compared to available
laboratory data, although z^* values remain experimentally inaccessible. Low
coordination packings have many rattlers (more than 10% of the grains carry no
force), which should be accounted for on studying position correlations, and a
small proportion of harmless "floppy modes" associated with divalent grains.
Frictional packings, however slowly assembled under low pressure, retain a
finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Comparative Study of Inner-Outer Krylov Solvers for Linear Systems in Structured and High-Order Unstructured CFD Problems
Advanced Krylov subspace methods are investigated for the solution of linear systems arising from an adjoint-based aerodynamic shape optimization problem. A special attention is paid for the flexible inner-outer GMRES strategy combined with most relevant preconditioning strategies and deflation techniques. The choice of this specific class of Krylov solvers for solving challenging problems is based on its outstanding convergence properties. Moreover, parallel scalability is improved by globalizing the preconditioning phase through an additive domain decomposition technique. However, maintaining the performance of the preconditioner may be challenging since scalability and efficiency of a preconditioning technique are properties often antagonistic to each other. We demonstrate how flexible inner-outer Krylov methods are able to overcome this critical issue. A numerical comparative study is provided on the supercritical OAT15A airfoil in turbulent flow under transonic regime conditions using a Finite Volume method (FV) and a High-Order Discontinuous Galerkin (DG) one. Based on this representative problem a discussion of the recommended numerical practices is proposed
Near-field imaging of single walled carbon nanotubes emitting in the telecom wavelength range
International audienceHybrid systems based on carbon nanotubes emitting in the telecom wavelength range and Si-photonic platforms are promising candidates for developing integrated photonic circuits. Here, we consider semiconducting single walled carbon nanotubes (s-SWNTs) emitting around 1300 nm or 1550 nm wavelength. The nanotubes are deposited on quartz substrate for mapping their photoluminescence in hyperspectral near-field microscopy. This method allows for a sub-wavelength resolution in detecting the spatial distribution of the emission of single s-SWNTs at room temperature. Optical signature delocalized over several micrometers is observed, thus denoting the high quality of the produced carbon nanotubes on a wide range of tube diameters. Noteworthy, the presence of both nanotube bundles and distinct s-SWNT chiralities is uncovered
Geometric origin of mechanical properties of granular materials
Some remarkable generic properties, related to isostaticity and potential
energy minimization, of equilibrium configurations of assemblies of rigid,
frictionless grains are studied. Isostaticity -the uniqueness of the forces,
once the list of contacts is known- is established in a quite general context,
and the important distinction between isostatic problems under given external
loads and isostatic (rigid) structures is presented. Complete rigidity is only
guaranteed, on stability grounds, in the case of spherical cohesionless grains.
Otherwise, the network of contacts might deform elastically in response to load
increments, even though grains are rigid. This sets an uuper bound on the
contact coordination number. The approximation of small displacements (ASD)
allows to draw analogies with other model systems studied in statistical
mechanics, such as minimum paths on a lattice. It also entails the uniqueness
of the equilibrium state (the list of contacts itself is geometrically
determined) for cohesionless grains, and thus the absence of plastic
dissipation. Plasticity and hysteresis are due to the lack of such uniqueness
and may stem, apart from intergranular friction, from small, but finite,
rearrangements, in which the system jumps between two distinct potential energy
minima, or from bounded tensile contact forces. The response to load increments
is discussed. On the basis of past numerical studies, we argue that, if the ASD
is valid, the macroscopic displacement field is the solution to an elliptic
boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and
minor errors correcte
Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles
Using velocity profile measurements based on dynamic light scattering and
coupled to structural and rheological measurements in a Couette cell, we
present evidences for a shear-banding scenario in the shear flow of the onion
texture of a lyotropic lamellar phase. Time-averaged measurements clearly show
the presence of structural shear-banding in the vicinity of a shear-induced
transition, associated to the nucleation and growth of a highly sheared band in
the flow. Our experiments also reveal the presence of slip at the walls of the
Couette cell. Using a simple mechanical approach, we demonstrate that our data
confirms the classical assumption of the shear-banding picture, in which the
interface between bands lies at a given stress . We also outline
the presence of large temporal fluctuations of the flow field, which are the
subject of the second part of this paper [Salmon {\it et al.}, submitted to
Phys. Rev. E]
- …