20 research outputs found
HLA-A2-Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/ cnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells
OBJECTIVEType 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes.RESEARCH DESIGN AND METHODSWe adoptively transferred HLA-A2–matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/γcnull/A2 mice after transfer.RESULTSHuman T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/γcnull/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2–matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8+ T cells among the islet infiltrates.CONCLUSIONSWe show that insulitis is transferred to NOD-scid/γcnull/A2 mice that received HLA-A2–matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8+ T cells are epitope-specific and produce interferon-γ after in vitro peptide stimulation. This indicates that NOD-scid/γcnull/A2 mice transferred with HLA-A2–matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell–mediated responses in patients with type 1 diabetes
HLA-A2–Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/γcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells
OBJECTIVE: Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing beta-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes. RESEARCH DESIGN AND METHODS: We adoptively transferred HLA-A2-matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/gammac(null)/HLA-A*0201 (NOD-scid/gammac(null)/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/gammac(null)/A2 mice after transfer. RESULTS: Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/gammac(null)/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/gammac(null)/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2-matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8(+) T cells among the islet infiltrates. CONCLUSIONS: We show that insulitis is transferred to NOD-scid/gammac(null)/A2 mice that received HLA-A2-matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8(+) T cells are epitope-specific and produce interferon-gamma after in vitro peptide stimulation. This indicates that NOD-scid/gammac(null)/A2 mice transferred with HLA-A2-matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell-mediated responses in patients with type 1 diabetes
Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial
Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes
Islet-Specific CTL Cloned from a Type 1 Diabetes Patient Cause Beta-Cell Destruction after Engraftment into HLAA2 Transgenic NOD/SCID/IL2RG Null Mice
Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D) and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP). HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP(265-273)-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγ(null) mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies
Species-Dependent Variations in Erythrocyte Membrane Skeletal Proteins
Two mammalian species (porcine and murine) have erythrocytes that are being widely used to study membrane protein synthesis and red cell aging. Erythrocytes of these species however, are significantly smaller than those of the human. Before results obtained from study of these red cells can be applied to human cells, the membrane skeleton of these species must be investigated to determine if the skeletal elements are equivalent. Both pig and mouse bands 4.1b were of lower molecular weight than human 4.1b, and the a/b ratio was lower. In each species, 4.1a and b were sequence-related phosphoproteins, and yielded substantially different one-dimensional peptide maps. Band 3 of pig and mouse erythrocytes had a higher molecular weight than human band 3 and also had differing one-dimensional peptide maps after limited proteolytic cleavage with three different enzymes. In each species, free band 3 and band 3 bound to the membrane skeleton had identical peptide maps. Other major membrane skeletal components (spectrin, actin, and bands 2.1 and 4.2) seem to be very similar in molecular weight in various species. These results demonstrate that the molecular weights and relative proportions of the membrane skeletal elements are species dependent
HLA-A2-matched peripheral blood mononuclear cells from type 1 diabetic patients, but not nondiabetic donors, transfer insulitis to NOD-scid/gammac(null)/HLA-A2 transgenic mice concurrent with the expansion of islet-specific CD8+ T cells.
OBJECTIVE: Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing beta-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes. RESEARCH DESIGN AND METHODS: We adoptively transferred HLA-A2-matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/gammac(null)/HLA-A*0201 (NOD-scid/gammac(null)/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/gammac(null)/A2 mice after transfer. RESULTS: Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/gammac(null)/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/gammac(null)/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2-matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8(+) T cells among the islet infiltrates. CONCLUSIONS: We show that insulitis is transferred to NOD-scid/gammac(null)/A2 mice that received HLA-A2-matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8(+) T cells are epitope-specific and produce interferon-gamma after in vitro peptide stimulation. This indicates that NOD-scid/gammac(null)/A2 mice transferred with HLA-A2-matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell-mediated responses in patients with type 1 diabetes