1,158 research outputs found
Electrically Charged Strange Quark Stars
The possible existence of compact stars made of absolutely stable strange
quark matter--referred to as strange stars--was pointed out by E. Witten almost
a quarter of a century ago. One of the most amazing features of such objects
concerns the possible existence of ultra-strong electric fields on their
surfaces, which, for ordinary strange matter, is around V/cm. If
strange matter forms a color superconductor, as expected for such matter, the
strength of the electric field may increase to values that exceed
V/cm. The energy density associated with such huge electric fields is on the
same order of magnitude as the energy density of strange matter itself, which,
as shown in this paper, alters the masses and radii of strange quark stars at
the 15% and 5% level, respectively. Such mass increases facilitate the
interpretation of massive compact stars, with masses of around , as
strange quark stars.Comment: Revised version, references added, 6 pages, 4 figures, accepted for
publication in Physical Review
Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field
The energy of a displaced magnetic vortex in a cylindrical particle made of
isotropic ferromagnetic material (magnetic dot) is calculated taking into
account the magnetic dipolar and the exchange interactions. Under the
simplifying assumption of small dot thickness the closed-form expressions for
the dot energy is written in a non-perturbative way as a function of the
coordinate of the vortex center. Then, the process of losing the stability of
the vortex under the influence of the externally applied magnetic field is
considered. The field destabilizing the vortex as well as the field when the
vortex energy is equal to the energy of a uniformly magnetized state are
calculated and presented as a function of dot geometry. The results (containing
no adjustable parameters) are compared to the recent experiment and are in good
agreement.Comment: 4 pages, 2 figures, RevTe
Magnetic Vortex Resonance in Patterned Ferromagnetic Dots
We report a high-resolution experimental detection of the resonant behavior
of magnetic vortices confined in small disk-shaped ferromagnetic dots. The
samples are magnetically soft Fe-Ni disks of diameter 1.1 and 2.2 um, and
thickness 20 and 40 nm patterned via electron beam lithography onto microwave
co-planar waveguides. The vortex excitation spectra were probed by a vector
network analyzer operating in reflection mode, which records the derivative of
the real and the imaginary impedance as a function of frequency. The spectra
show well-defined resonance peaks in magnetic fields smaller than the
characteristic vortex annihilation field. Resonances at 162 and 272 MHz were
detected for 2.2 and 1.1 um disks with thickness 40 nm, respectively. A
resonance peak at 83 MHz was detected for 20-nm thick, 2-um diameter disks. The
resonance frequencies exhibit weak field dependence, and scale as a function of
the dot geometrical aspect ratio. The measured frequencies are well described
by micromagnetic and analytical calculations that rely only on known properties
of the dots (such as the dot diameter, thickness, saturation magnetization, and
exchange stiffness constant) without any adjustable parameters. We find that
the observed resonance originates from the translational motion of the magnetic
vortex core.Comment: submitted to PRB, 17 pages, 5 Fig
Strange Star Heating Events as a Model for Giant Flares of Soft Gamma-ray Repeaters
Two giant flares were observed on 5 March 1979 and 27 August 1998 from the
soft gamma-ray repeaters SGR 0526-66 and SGR 1900+14, respectively. The
striking similarity between these remarkable bursts strongly implies a common
nature. We show that the light curves of the giant bursts may be easily
explained in the model where the burst radiation is produced by the bare quark
surface of a strange star heated, for example, by impact of a massive
comet-like object.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Letter
Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media
Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball
interacting with an external medium, we calculate the hydrodynamics of the
fireball with energy injection from a strongly magnetic millisecond pulsar
through magnetic dipole radiation, and obtain the light curve of the optical
afterglow from the fireball by synchrotron radiation. Results are given both
for a homogeneous external medium and for a wind ejected by GRB progenitor. Our
calculations are also available in both ultra-relativistic and non-relativistic
phases. Furthermore, the observed R-band light curve of GRB{000301C} can be
well fitted in our model, which might provide a probe of the properties of GRB
progenitors.Comment: revised version for publication in Chin. Phys. Let
A Survey for Transient Astronomical Radio Emission at 611 MHz
We have constructed and operated the Survey for Transient Astronomical Radio
Emission (STARE) to detect transient astronomical radio emission at 611 MHz
originating from the sky over the northeastern United States. The system is
sensitive to transient events on timescales of 0.125 s to a few minutes, with a
typical zenith flux density detection threshold of approximately 27 kJy. During
18 months of around-the-clock observing with three geographically separated
instruments, we detected a total of 4,318,486 radio bursts. 99.9% of these
events were rejected as locally generated interference, determined by requiring
the simultaneous observation of an event at all three sites for it to be
identified as having an astronomical origin. The remaining 3,898 events have
been found to be associated with 99 solar radio bursts. These results
demonstrate the remarkably effective RFI rejection achieved by a coincidence
technique using precision timing (such as GPS clocks) at geographically
separated sites. The non-detection of extra-solar bursting or flaring radio
sources has improved the flux density sensitivity and timescale sensitivity
limits set by several similar experiments in the 1970s. We discuss the
consequences of these limits for the immediate solar neighborhood and the
discovery of previously unknown classes of sources. We also discuss other
possible uses for the large collection of 611 MHz monitoring data assembled by
STARE.Comment: 24 pages, 6 figures; to appear in PAS
Bethe-Salpeter approach for relativistic positronium in a strong magnetic field
We study the electron-positron system in a strong magnetic field using the
differential Bethe-Salpeter equation in the ladder approximation. We derive the
fully relativistic two-dimensional form that the four-dimensional
Bethe-Salpeter equation takes in the limit of asymptotically strong constant
and homogeneous magnetic field. An ultimate value for the magnetic field is
determined, which provides the full compensation of the positronium rest mass
by the binding energy in the maximum symmetry state and vanishing of the energy
gap separating the electron-positron system from the vacuum. The compensation
becomes possible owing to the falling to the center phenomenon that occurs in a
strong magnetic field because of the dimensional reduction. The solution of the
Bethe-Salpeter equation corresponding to the vanishing energy-momentum of the
electron-positron system is obtained.Comment: 35 pages, minor correction
Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices
In this paper we present calculations on the electronic band structure of a
two-dimensional lateral superlattice subject to a perpendicular magnetic field
by employing a projection operator technique based on the ray-group of
magnetotranslation operators. We construct a new basis of appropriately
symmetrized Bloch-like wavefunctions as linear combination of well-localized
magnetic-Wannier functions. The magnetic field was consistently included in the
Wannier functions defined in terms of free-electron eigenfunctions in the
presence of external magnetic field in the symmetric gauge. Using the above
basis, we calculate the magnetic energy spectrum of electrons in a lateral
superlattice with bi-directional weak electrostatic modulation. Both a square
lattice and a triangular one are considered as special cases. Our approach
based on group theory handles the cases of integer and rational magnetic fluxes
in a uniform way and the provided basis could be convenient for further both
analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
Effect Of Implantation Temperature On Damage Accumulation In Ar - Implanted GaN
A systematic investigation of damage accumulation in GaN films induced by Ar + as a function of implantation temperature and dose rate has been conducted. Depth distribution of disorder was measured by Rutherford Backscattering/Channeling spectrometry. Two disordered regions were identified in the damage depth distribution: a surface peak and a bulk damage peak. These regions exhibited different behavior as a function of implantation temperature. The displaced atomic density in the bulk damage peak displayed a “reverse annealing” behavior in temperature range from 500 °C to 700 °C, which we attributed to formation of characteristic secondary defects. The influence of implantation temperature and dose rate on the radiation damage accumulation is discussed
- …