61 research outputs found

    Plasmodium knowlesi: Reservoir Hosts and Tracking the Emergence in Humans and Macaques

    Get PDF
    Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000–40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host

    A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Get PDF
    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire

    Widespread Genomic Signatures of Natural Selection in Hominid Evolution

    Get PDF
    Selection acting on genomic functional elements can be detected by its indirect effects on population diversity at linked neutral sites. To illuminate the selective forces that shaped hominid evolution, we analyzed the genomic distributions of human polymorphisms and sequence differences among five primate species relative to the locations of conserved sequence features. Neutral sequence diversity in human and ancestral hominid populations is substantially reduced near such features, resulting in a surprisingly large genome average diversity reduction due to selection of 19–26% on the autosomes and 12–40% on the X chromosome. The overall trends are broadly consistent with “background selection” or hitchhiking in ancestral populations acting to remove deleterious variants. Average selection is much stronger on exonic (both protein-coding and untranslated) conserved features than non-exonic features. Long term selection, rather than complex speciation scenarios, explains the large intragenomic variation in human/chimpanzee divergence. Our analyses reveal a dominant role for selection in shaping genomic diversity and divergence patterns, clarify hominid evolution, and provide a baseline for investigating specific selective events

    An initial comparative map of copy number variations in the goat (Capra hircus) genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goat (<it>Capra hircus</it>) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome.</p> <p>Results</p> <p>We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P < 0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals.</p> <p>Conclusions</p> <p>We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats.</p

    Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    Facial width-to-height ratio relates to alpha status and assertive personality in capuchin monkeys

    Get PDF
    Social dominance hierarchies play a pivotal role in shaping the behaviour of many species, and sex differences within these hierarchies often exist. To date, however, few physical markers of dominance have been identified. Such markers would be valuable in terms of understanding the etiology of dominant behaviour and changes in social hierarchies over time. Animals may also use such traits to evaluate the potential dominance of others relative to themselves (i.e. a physical “cue”). Facial width-to-height ratio (fWHR), for example, has been suggested as a cue to dominance in humans, with links to both dominant behaviour and the perception of dominance in other individuals. Whether this association is present in non-human animals is currently not known. Therefore, here we examine within-species links between fWHR and dominant behaviour in 64 brown capuchin monkeys (Sapajus spp.) aged between 2 and 40 years. fWHR was positively associated with alpha status and with a dimensional rating of assertive personality in both males and females. Moreover, fWHR showed significant sexual dimorphism in adults but not juveniles, suggesting a developmental change may occur during puberty. In a sub-sample, sex differences were mediated by weight, suggesting fWHR dimorphism does not exceed what would be expected by differences in body weight. This is the first report of an association between face shape and behaviour in a non-human species. Results are discussed in terms of the role that face-behaviour associations might play within capuchin societies, and the possible selective forces that might have led to the evolution of fWHR-dominance associations in humans

    Evolution of Multilevel Social Systems in Nonhuman Primates and Humans

    Full text link
    corecore