6,839 research outputs found
Switchable Hardening of a Ferromagnet at Fixed Temperature
The intended use of a magnetic material, from information storage to power
conversion, depends crucially on its domain structure, traditionally crafted
during materials synthesis. By contrast, we show that an external magnetic
field applied transverse to the preferred magnetization of a model disordered
uniaxial ferromagnet is an isothermal regulator of domain pinning. At elevated
temperatures, near the transition into the paramagnet, modest transverse fields
increase the pinning, stabilize the domain structure, and harden the magnet,
until a point where the field induces quantum tunneling of the domain walls and
softens the magnet. At low temperatures, tunneling completely dominates the
domain dynamics and provides an interpretation of the quantum phase transition
in highly disordered magnets as a localization/delocalization transition for
domain walls. While the energy scales of the rare earth ferromagnet studied
here restrict the effects to cryogenic temperatures, the principles discovered
are general and should be applicable to existing classes of highly anisotropic
ferromagnets with ordering at room temperature or above.Comment: 10 pages, 4 figure
Probing many-body localization in a disordered quantum magnet
Quantum states cohere and interfere. Quantum systems composed of many atoms
arranged imperfectly rarely display these properties. Here we demonstrate an
exception in a disordered quantum magnet that divides itself into nearly
isolated subsystems. We probe these coherent clusters of spins by driving the
system beyond its linear response regime at a single frequency and measuring
the resulting "hole" in the overall linear spectral response. The Fano shape of
the hole encodes the incoherent lifetime as well as coherent mixing of the
localized excitations. For the disordered Ising magnet,
, the quality factor for spectral holes
can be as high as 100,000. We tune the dynamics of the quantum degrees of
freedom by sweeping the Fano mixing parameter through zero via the
amplitude of the ac pump as well as a static external transverse field. The
zero-crossing of is associated with a dissipationless response at the drive
frequency, implying that the off-diagonal matrix element for the two-level
system also undergoes a zero-crossing. The identification of localized
two-level systems in a dense and disordered dipolar-coupled spin system
represents a solid state implementation of many-body localization, pushing the
search forward for qubits emerging from strongly-interacting, disordered,
many-body systems.Comment: 22 pages, 6 figure
Design of a 12 channel fm microwave receiver
The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network
Barkhausen noise in the Random Field Ising Magnet NdFeB
With sintered needles aligned and a magnetic field applied transverse to its
easy axis, the rare-earth ferromagnet NdFeB becomes a
room-temperature realization of the Random Field Ising Model. The transverse
field tunes the pinning potential of the magnetic domains in a continuous
fashion. We study the magnetic domain reversal and avalanche dynamics between
liquid helium and room temperatures at a series of transverse fields using a
Barkhausen noise technique. The avalanche size and energy distributions follow
power-law behavior with a cutoff dependent on the pinning strength dialed in by
the transverse field, consistent with theoretical predictions for Barkhausen
avalanches in disordered materials. A scaling analysis reveals two regimes of
behavior: one at low temperature and high transverse field, where the dynamics
are governed by the randomness, and the second at high temperature and low
transverse field where thermal fluctuations dominate the dynamics.Comment: 16 pages, 7 figures. Under review at Phys. Rev.
Exploring the On-line Partitioning of Posets Problem
One question relating to partially ordered sets (posets) is that of partitioning or dividing the poset\u27s elements into the fewest number of chains that span the poset. In 1950, Dilworth established that the width of the poset - the size of the largest set composed only of incomparable elements - is the minimum number of chains needed to partition that poset. Such a bound in on-line partitioning has been harder to establish, and work has evalutated classes of posets based on their width. This paper reviews the theorems that established val(2)=5 and illustrates them with examples. It also covers some of the work on establishing bounds for on-line partitioning with the Greedy Algorithm. The paper concludes by contributing a bound on incomparable elements in graded, (t+t)-free, finite width posets
Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver
The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network
Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection
The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode
Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition
We use synchrotron x-ray diffraction and electrical transport under pressure
to probe both the magnetism and the structure of single crystal NiS2 across its
Mott-Hubbard transition. In the insulator, the low-temperature
antiferromagnetic order results from superexchange among correlated electrons
and couples to a (1/2, 1/2, 1/2) superlattice distortion. Applying pressure
suppresses the insulating state, but enhances the magnetism as the
superexchange increases with decreasing lattice constant. By comparing our
results under pressure to previous studies of doped crystals we show that this
dependence of the magnetism on the lattice constant is consistent for both band
broadening and band filling. In the high pressure metallic phase the lattice
symmetry is reduced from cubic to monoclinic, pointing to the primary influence
of charge correlations at the transition. There exists a wide regime of phase
separation that may be a general characteristic of correlated quantum matter.Comment: 5 pages, 3 figure
- …