15,095 research outputs found
The identification of gamma ray induced EAS
Some of the penetrating particles in gamma-induced EAS from Cygnus X-3 observed by a single layer of flash-bulbs under 880 g cm/2 concrete, may be punched through photons rather than muons. An analysis of the shielded flash-tube response detected from EAS is presented. The penetration of the electro-magnetic component through 20 cm of Pb is observed at core distances approx. 10 m
Analysis of dynamic stall using unsteady boundary-layer theory
The unsteady turbulent boundary layer and potential flow about a pitching airfoil are analyzed using numerical methods to determine the effect of pitch rate on the delay in forward movement of the rear flow reversal point. An explicit finite difference scheme is used to integrate the unsteady boundary layer equations, which are coupled at each instant of time to a fully unsteady and nonlinear potential flow analysis. A substantial delay in forward movement of the reversal point is demonstrated with increasing pitch rate, and it is shown that the delay results partly from the alleviation of the gradients in the potential flow, and partly from the effects of unsteadiness in the boundary layer itself. The predicted delay in flow-reversal onset, and its variation with pitch rate, are shown to be in reasonable agreement with experimental data relating to the delay in dynamic stall. From the comparisons it can be concluded (a) that the effects of time-dependence are sufficient to explain the failure of the boundary layer to separate during the dynamic overshoot, and (b) that there may be some link between forward movement of the reversal point and dynamic stall
Why do planetary wave number one and the ozone transport vary annually in the Northern Hemisphere and semiannually in the Southern Hemisphere
Evidence is cited from these studies and those of others showing the different nature of the yearly variations of the middle atmospheres of the Northern and Southern Hemispheres. The Northern Hemisphere middle atmosphere is shown to be characterized by annual variations in planetary wave number one amplitude and the accompanying ozone transports. The Southern Hemisphere middle atmosphere is shown to be characterized by semiannual variations in the amplitude of planetary wave number one and the accompanying ozone transports. The amplitude of wave number two in both hemispheres appears to vary annually. Examination is made of the nature of the planetary wave forcing in both hemispheres as well as the planetary wave propagation characteristics in both hemispheres in an attempt to better understand this
Average features of the muon component of EAS or = 10(17) eV
Three 10 sq m liquid scintillators were situated at approximately 0 m, 150 m and 250 m from the center of the Haverah Park array. The detectors were shielded by lead/barytes giving muon detection thresholds of 317 MeV, 431 MeV and 488 MeV respectively. During part of the operational period the 431 MeV threshold was lowered to 313 MeV for comparison purposes. For risetime measurement fast phototubes were used and the 10% to 70% amplitude time interval was parameterized by T sub 70. A muon lateral density distribution of the form rho mu (R theta) = krho(500)0.94 1/R(1 + R/490)-eta has been fitted to the data for 120 m R 600 m and 0.27 (500) 2.55. The shower size parameter (500) is the water Cerenkov response at 500 m from the core of the extensive air showers (EAS) and is relatable to the primary energy. The results show general consistency
Muon fluctuation studies of EAS 10(17) eV
Fluctuation studies need to compare a parameter which is sensitive to longitudinal fluctuations against a parameter which is insensitive. Cascade calculations indicate that the shower size parameter at Haverah Park, rho (500), and the muon density are insensitive while parameters that significantly reflect the longitudinal development of a particular extensive air shower (EAS) include the muon/water Cerenkov response ratio and the muon arrival time dispersion. This paper presents conclusions based on muon fluctuation studies of EAS measured between 1976 and 1981 at Haverah Park
The muon content of EAS as a function of primary energy
The muon content of extensive air showers (EAS) was measured over the wide primary energy range 10 to the 16th power to 10 to the 20th power eV. It is reported that the relative muon content of EAS decreases smoothly over the energy range 10 to the 17th power to 10 to the 19th power eV and concluded that the primary cosmic ray flux has a constant mass composition over this range. It is also reported that an apparent significant change in the power index occurs below 10 to the 17th power eV rho sub c (250 m) sup 0.78. Such a change indicates a significant change in primary mass composition in this range. The earlier conclusions concerning EAS of energy 10 to the 17th power eV are confirmed. Analysis of data in the 10 to the 16th power - 10 to the 17th power eV range revealed a previously overlooked selection bias in the data set. The full analysis of the complete data set in the energy range 10 to the 16th power - 10 to the 17th power ev with the selection bias eliminated is presented
Global atmospheric circulation statistics: Four year averages
Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity
Reverse graded relaxed buffers for high Ge content SiGe virtual substrates
An innovative approach is proposed for epitaxial growth of high Ge content, relaxed Si1−xGex buffer layers on a Si(001) substrate. The advantages of the technique are demonstrated by growing such structures via chemical vapor deposition and their characterization. Relaxed Ge is first grown on the substrate followed by the reverse grading approach to reach a final buffer composition of 0.78. The optimized buffer structure is only 2.8 µm thick and demonstrates a low surface threading dislocation density of 4×106 cm−2, with a surface roughness of 2.6 nm. The buffers demonstrate a relaxation of up to 107%
Topological Phase Transitions and Holonomies in the Dimer Model
We demonstrate that the classical dimer model defined on a toroidal hexagonal
lattice acquires holonomy phases in the thermodynamic limit. When all
activities are equal the lattice sizes must be considered mod 6 in which case
the finite size corrections to the bulk partition function correspond to a
massless Dirac Fermion in the presence of a flat connection with nontrivial
holonomy. For general bond activities we find that the phase transition in this
model is a topological one, where the torus degenerates and its modular
parameter becomes real at the critical temperature. We argue that these
features are generic to bipartite dimer models and we present a more general
lattice whose continuum partition function is that of a massive Dirac Fermion.Comment: 7 pages, 4 figures. Minor corrections with additional figure
Fully Dynamic Matching in Bipartite Graphs
Maximum cardinality matching in bipartite graphs is an important and
well-studied problem. The fully dynamic version, in which edges are inserted
and deleted over time has also been the subject of much attention. Existing
algorithms for dynamic matching (in general graphs) seem to fall into two
groups: there are fast (mostly randomized) algorithms that do not achieve a
better than 2-approximation, and there slow algorithms with \O(\sqrt{m})
update time that achieve a better-than-2 approximation. Thus the obvious
question is whether we can design an algorithm -- deterministic or randomized
-- that achieves a tradeoff between these two: a approximation
and a better-than-2 approximation simultaneously. We answer this question in
the affirmative for bipartite graphs.
Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps
approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give
stronger results for graphs whose arboricity is at most \al, achieving a (1+
\eps) approximation in worst-case time O(\al (\al + \log n)) for constant
\eps. When the arboricity is constant, this bound is and when the
arboricity is polylogarithmic the update time is also polylogarithmic.
The most important technical developement is the use of an intermediate graph
we call an edge degree constrained subgraph (EDCS). This graph places
constraints on the sum of the degrees of the endpoints of each edge: upper
bounds for matched edges and lower bounds for unmatched edges. The main
technical content of our paper involves showing both how to maintain an EDCS
dynamically and that and EDCS always contains a sufficiently large matching. We
also make use of graph orientations to help bound the amount of work done
during each update.Comment: Longer version of paper that appears in ICALP 201
- …