14 research outputs found

    Effective temperature and jamming transition in dense, gently sheared granular assemblies

    Full text link
    We present extensive computational results for the effective temperature, defined by the fluctuation-dissipation relation between the mean square displacement and the average displacement of grains, under the action of a weak, external perturbation, of a sheared, bi-disperse granular packing of compressible spheres. We study the dependence of this parameter on the shear rate and volume fractions, the type of particle and the observable in the fluctuation-dissipation relation. We find the same temperature for different tracer particles in the system. The temperature becomes independent on the shear rate for slow enough shear suggesting that it is the effective temperature of the jammed packing. However, we also show that the agreement of the effective temperature for different observables is only approximate, for very long times, suggesting that this defintion may not capture the full thermodynamics of the system. On the other hand, we find good agreement between the dynamical effective temperature and a compactivity calculated assuming that all jammed states are equiprobable. Therefore, this definition of temperature may capture an instance of the ergodic hypothesis for granular materials as proposed by theoretical formalisms for jamming. Finally, our simulations indicate that the average shear stress and apparent shear viscosity follow the usual relation with the shear rate for complex fluids. Our results show that the application of shear induces jamming in packings whose particles interact by tangential forces.Comment: Preprint form, 23 pages, 18 figure

    From crystal to amorphopus: a novel route towards unjamming in soft disk packings

    Full text link
    It is presented a numerical study on the unjamming packing fraction of bi- and polydisperse disk packings, which are generated through compression of a monodisperse crystal. In bidisperse systems, a fraction f_+ = 40% up to 80% of the total number of particles have their radii increased by \Delta R, while the rest has their radii decreased by the same amount. Polydisperse packings are prepared by changing all particle radii according to a uniform distribution in the range [-\Delta R,\Delta R]. The results indicate that the critical packing fraction is never larger than the value for the initial monodisperse crystal, \phi = \pi/12, and that the lowest value achieved is approximately the one for random close packing. These results are seen as a consequence of the interplay between the increase in small-small particle contacts and the local crystalline order provided by the large-large particle contacts.Comment: two columns, 14 pages, 12 figures, accepted for publication in Eur. Phys. J.

    Nonextensive perfect hydrodynamics - a model of dissipative relativistic hydrodynamics?

    Full text link
    We demonstrate that nonextensive perfect relativistic hydrodynamics (qq-hydrodynamics) can serve as a model of the usual relativistic dissipative hydrodynamics (dd-hydrodynamics) facilitating therefore considerably its applications. As illustration we show how using qq-hydrodynamics one gets the qq-dependent expressions for the dissipative entropy current and the corresponding ratios of the bulk and shear viscosities to entropy density, /s\zeta/s and /s\eta/s.Comment: Invited talk presented at SigmaPhi2008 conference, Kolymbari, Crete, 14-18 July 2008, revised version to be published in Cent. Eur. J. Phys. (2009
    corecore