9,098 research outputs found

    Quantum molecular dynamics simulations for the nonmetal-metal transition in shocked methane

    Full text link
    We have performed quantum molecular-dynamics simulations for methane under shock compressions up to 80 GPa. We obtain good agreement with available experimental data for the principal Hugoniot, derived from the equation of state. A systematic study of the optical conductivity spectra, one-particle density of states, and the distributions of the electronic charge over supercell at Hugoniot points shows that the transition of shocked methane to a metallic state takes place close to the density at which methane dissociates significantly into molecular hydrogen and some long alkane chains. Through analyzing the pair correlation function, we predict the chemical picture of the shocked methane. In contrast to usual assumptions used for high pressure modeling of methane, we find that no diamond-like configurations occurs for the whole density-temperature range studied.Comment: Some revisions have been given in response to referees' sugestion

    The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities

    Full text link
    In this paper, we present extraordinary algebraic and geometrical structures for the Hunter-Saxton equation: infinitely many commuting and non-commuting x,tx,t-independent higher order symmetries and conserved densities. Using a recursive relation, we explicitly generate infinitely many higher order conserved densities dependent on arbitrary parameters. We find three Nijenhuis recursion operators resulting from Hamiltonian pairs, of which two are new. They generate three hierarchies of commuting local symmetries. Finally, we give a local recursion operator depending on an arbitrary parameter. As a by-product, we classify all anti-symmetric operators of a definite form that are compatible with the Hamiltonian operator Dx−1D_x^{-1}

    Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    Full text link
    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.Comment: 15 pages, 6 figure

    Effective Vortex Mass from Microscopic Theory

    Full text link
    We calculate the effective mass of a single quantized vortex in the BCS superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω)J(\omega) divided by ω3\omega^3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfΟ0)2m (k_f \xi_0)^2 (kfk_f=Fermi momentum, Ο0\xi_0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5TcT\approx 0.5 T_c and decreases continuously to zero at TcT_c.Comment: Supercedes prior version, cond-mat/990312

    Angoricity and compactivity describe the jamming transition in soft particulate matter

    Full text link
    The application of concepts from equilibrium statistical mechanics to out-of-equilibrium systems has a long history of describing diverse systems ranging from glasses to granular materials. For dissipative jammed systems-- particulate grains or droplets-- a key concept is to replace the energy ensemble describing conservative systems by the volume-stress ensemble. Here, we test the applicability of the volume-stress ensemble to describe the jamming transition by comparing the jammed configurations obtained by dynamics with those averaged over the ensemble as a probe of ergodicity. Agreement between both methods suggests the idea of "thermalization" at a given angoricity and compactivity. We elucidate the thermodynamic order of the jamming transition by showing the absence of critical fluctuations in static observables like pressure and volume. The approach allows to calculate observables such as the entropy, volume, pressure, coordination number and distribution of forces to characterize the scaling laws near the jamming transition from a statistical mechanics viewpoint.Comment: 27 pages, 13 figure

    Statistics of X-ray flares of Sagittarius A*: evidence for solar-like self-organized criticality phenomenon

    Get PDF
    X-ray flares have routinely been observed from the supermassive black hole, Sagittarius A⋆^\star (Sgr A⋆^\star), at our Galactic center. The nature of these flares remains largely unclear, despite of many theoretical models. In this paper, we study the statistical properties of the Sgr A⋆^\star X-ray flares, by fitting the count rate (CR) distribution and the structure function (SF) of the light curve with a Markov Chain Monte Carlo (MCMC) method. With the 3 million second \textit{Chandra} observations accumulated in the Sgr A⋆^\star X-ray Visionary Project, we construct the theoretical light curves through Monte Carlo simulations. We find that the 2−82-8 keV X-ray light curve can be decomposed into a quiescent component with a constant count rate of ∌6×10−3 \sim6\times10^{-3}~count s−1^{-1} and a flare component with a power-law fluence distribution dN/dE∝E−αEdN/dE\propto E^{-\alpha_{\rm E}} with αE=1.65±0.17\alpha_{\rm E}=1.65\pm0.17. The duration-fluence correlation can also be modelled as a power-law T∝EαETT\propto E^{\alpha_{\rm ET}} with αET<0.55\alpha_{\rm ET} < 0.55 (95%95\% confidence). These statistical properties are consistent with the theoretical prediction of the self-organized criticality (SOC) system with the spatial dimension S=3S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole.Comment: to appear in Ap

    Continuous-Variable Spatial Entanglement for Bright Optical Beams

    Get PDF
    A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the standard quantum limit. We identify the position and momentum observables for bright optical beams and show that position and momentum entanglement can be generated by interfering two position, or momentum, squeezed beams on a beam splitter. The position and momentum measurements of these beams can be performed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare this form of spatial entanglement with split detection-based spatial entanglement.Comment: 7 pages, 3 figures, submitted to PR

    Systematic Theoretical Search for Dibaryons in a Relativistic Model

    Get PDF
    A relativistic quark potential model is used to do a systematic search for quasi-stable dibaryon states in the uu, dd, and ss three flavor world. Flavor symmetry breaking and channel coupling effects are included and an adiabatic method and fractional parentage expansion technique are used in the calculations. The relativistic model predicts dibaryon candidates completely consistent with the nonrelativistic model.Comment: 12 pages, latex, no figure

    Polarization Squeezing of Continuous Variable Stokes Parameters

    Get PDF
    We report the first direct experimental characterization of continuous variable quantum Stokes parameters. We generate a continuous wave light beam with more than 3 dB of simultaneous squeezing in three of the four Stokes parameters. The polarization squeezed beam is produced by mixing two quadrature squeezed beams on a polarizing beam splitter. Depending on the squeezed quadrature of these two beams the quantum uncertainty volume on the Poincar\'{e} sphere became a `cigar' or `pancake'-like ellipsoid.Comment: 4 pages, 5 figure

    The d' dibaryon in the quark-delocalization, color-screening model

    Full text link
    We study the questions of the existence and mass of the proposed dâ€Č(IJP=00−)d' (IJ^P=00^-) dibaryon in the quark-delocalization, color-screening model (QDCSM). The transformation between physical and symmetry bases has been extended to the cases beyond the SU(2) orbital symmetry. Using parameters fixed by baryon properties and NNNN scattering, we find a mild attraction in the IJP=00−IJ^P=00^- channel, but it is not strong enough to form a deeply bound state as proposed for the dâ€Čd' state. Nor does the (isospin) I=2 NΔ\Delta configuration have a deeply bound state. These results show that if a narrow dibaryon dâ€Čd' state does exist, it must have a more complicated structure.Comment: 12 pp. latex, no figs., 2 tables, additional refs., Report-no was adde
    • 

    corecore